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Chapter 1

Introduction

1.1 Motivation

The majority of real-life optimization problems often have to deal with uncer-
tainty from one or more sources when taking decisions. The simplest method
to cope with uncertainty is to transform the random elements into a single
number (i.e. commonly the mean value) and solve the problem. However, this
simplification does not capture the full characteristic of the uncertain elements,
e.g. deviations, tail effects, and how they can affect our decisions. Stochastic
optimization aims to avoid this oversimplification by incorporating uncertainty
and the preferences of the decision maker (risk aversion) into the optimization
modeling and solving process. We can see how this topic is steadily growing in
terms of publications in the last 20 years as shown in Figure 1.1: as of July of
2019 a total of 2,228 articles have been published through the year according to
Scopus, which is already 53.5% of 2018’s total.

Figure 1.1: Number of publications in Scopus under the tag stochastic optimization
from 2000 to 2019.

This thesis is centered around the development of methods and algorithms
to solve different types of stochastic optimization problems that deal with risk.
The first work in on chance-constrained problems (CCP), and the second on risk-
averse two-stage stochastic problems (TSSP). The main challenge of stochastic
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optimization is that one often generates models that cannot be solved directly:
we need to transform it to a tractable deterministic equivalent problem (DEP)
and solve it using any of the commercial solvers available. Näıve reformulations
into DEPs can, and often will, result in complex and/or large DEPs that current
solvers may not be able to solve in an adequate amount of time, or even load
in memory due to its size. As an example, the use of optimization in mining—
one of the most important economical activities of Chile—is primarily focused
in obtaining the exploitation scheduling of a mine, which can often lead to
formulations with millions of constraints and decision variables. The large size
of these models is one of the reasons why stochastic optimization has experienced
a slow adoption in this research community.

These issues have inspired many researchers to find answers to the following
questions: are there other ways to formulate and/or solve the same problem?
Can we simplify the formulation in order to solve it within a time limit? Can
we leverage on the structure of the formulation to generate efficient algorithms
to solve the problem? As stated in [24], the continuous growth of computational
power has been able to tackle part of these issues, but there still much ground to
cover if we wish to rely on technology alone. This is the main motivation of this
thesis: generate efficient algorithms and methodologies to cope with risk-averse
stochastic programming problems.

In our first paper, we build on the work of [43]. We considered linear binary
CCP, an important class of problems which has not received the deserved atten-
tion in the literature. We started by formulating a DEP, which relies on auxiliary
binary variables. Our main contribution was to use infeasible irreducible subsys-
tems (IIS) for linear binary CCP. We leveraged on modern solver’s capabilities
of finding approximate IIS for binary problems, and instead of attacking the
DEP directly, our algorithm generated cuts that were added to a master prob-
lem at each iteration. Our methodology exploited the fact that we are dealing
with binary variables, and we were focused on feasibility and optimality.

Our first set of experiments focused on several instances of a vaccine problem,
which has a single chance constraint. We were able to reduce the number of
nodes explored in a branch-and-cut tree created by the solver substantially; for
large instances the reduction was more than 99%. Furthermore, while resolution
time was not our main goal, we solved these large problems faster than a näıve
approach using a commercial solver, which in some cases did not close the
optimality gap after 24 hours.

Our methods inspired an heuristic to cope with the more challenging case
of a joint chance constraint. We considered a probabilistic set covering problem
described in [7], and obtain good quality approximations for the optimal value
for most instances.

In the second paper of this thesis, we proposed a new formulation to the
stochastic version of the ultimate pit (UP) problem. After a stochastic model
for the ore grade is inferred through drill samples and techniques such as krig-
ging, the mine is then divided into a set of blocks that are a mathematical
representation of the deposit. The block model allows one to impose precedence
constraints to avoid cave-ins or collapses of the walls of the mine. The UP



8 CHAPTER 1. INTRODUCTION

problem determines the contour of the mine assuming an infinite availability of
resources. The optimal solution of this problem is often used as an input to
other approaches that provide a schedule of extraction over time.

The UP problem is commonly solved using the mean ore grade of each block,
transforming it to a deterministic problem. As discussed before, the use of a
single value for each block’s ore grade can lead to negative consequences. We
formulate the UP problem as a risk-averse TSSP, using the Entropic risk measure
(Ent) to represent risk-aversion. Ent is a non-coherent convex risk measure and
it is not commonly used in this type of problems. We contrast the use of this
risk measure with the more popular Conditional Value-at-Risk (CVaR), which
proved to lack desirable properties in the mining context.

We first show results for a self-constructed instance and show how uncer-
tainty can change the final configuration of the solution depending of the risk
aversion of the decision maker. We also apply our methodology to Andina, a
real world mine of Chile, to show its potential in real life instances. Finally, our
conclusions detail how Ent proves to be a adequate tool to capture uncertainty
in the stochastic UP problem, how variance and covariance in the ore grade
stochastic model can change the problem’s solutions, and how changing the risk
aversion level is a superior methodology to generate ultimate pits that are used
as input in the long-term scheduling heuristics.
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Chapter 2

Bibliographic Review

2.1 Binary IIS Algorithm

• [44] is the cornerstone of the first part of our research. They proposed
a branch-and-cut algorithm for chance-constrained problems (CCP) with
continuous variables. By working on the deterministic equivalent formu-
lation of the problem, which can be cast as a mixed integer problem, they
were able to reduce the computational effort and time to solve it. Using
their work, we set ground for ours by first reproducing their results, and
then extending their methodology for CCP with binary variables.

• [41] is the main source of information on general properties of chance-
constrained problems, setting the base on our work. Chapter 4 was stud-
ied to understand what a chance constrained problem is, and chapter 5
(specifically §5.1) was used as a reference on the use of the sample average
approximation (SAA) for CCP.

• [8] was also a source of information on chance-constrained problems ap-
proximations using SAA. This work explains in detail how to tune param-
eters in order to obtain lower and upper bounds on the problem, in a very
general setting.

• [13] thoroughly describes and explains what an IIS is and their implica-
tions in optimization problems. The author describes different algorithms
to find IIS for different classes of problems, such linear, nonlinear, etc.

• [20] propose a simple method to obtain IIS using linear programming,
that works only for the continuous case. Their approach finds a polytope
such that the support of the vertices are in one-to-one correspondence
with the IIS of a given system of inequalities. Tanner and Ntaimo make
extensive use of this result to obtain the cuts in their paper.

• [32] provide sample size estimates for SAA in chance-constrained prob-
lems, guaranteeing that the optimal value and optimal solution of the

10
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approximate problems are close to their deterministic counterparts with
high probability. The sample size do not grow significantly if the reliabil-
ity is increased, and the authors show how the method can be applied to a
probabilistic set covering problem, and to a transportation problem. We
are using the probabilistic set covering problem to test our methodology.

• [3] and [42] are works on binary chance-constrained problems which also
propose cutting techniques for specific types of problems. We consulted
these papers in order compare their computational results with our tech-
nique. [14]

2.2 Risk-averse Ultimate Pit Problem

• [35] propose a risk measure that is consistent with second degree stochas-
tic dominance. We studied this paper as a first approach to risk-averse
measures theory.

• [39] formulate a new approach on optimizing a portfolio of financial in-
strument to reduce risk. They were able to find a deterministic equivalent
formulation to calculate the CVaR as optimization problem. This work
is crucial to our understanding on optimization problems using risk mea-
sures.

• [14] consider what should the appropriate risk measure for a type of
transportation problem. They show that the only measure that satisfies a
natural property for this problem is the entropic risk measure. This work
inspired us to consider the questions formulated in §4.1.

• [25] propose multistage risk-averse models and discuss the concept of con-
sistency. They show that the so-called expected conditional risk measures
are a promising alternative.

• [15] is a empirical investigation of decomposition algorithm to solve stochas-
tic linear programs using risk measures. We studied this as it could prove
useful in implementation of decomposition algorithm .

• [19] is one of the base papers studied for our work. The ultimate pit
problem is formulated using ore grade uncertainty and results are com-
pared using three different risk measures: Expected value, Conditional
Value-at-Risk and ε-Modulated Convex-Hull. We used it to understand
the ultimate pit problem and to determine its stochastic equivalent for
other risk measures not considered in the paper.

• [28]. In this work, instead of ore grade uncertainty, the authors focus on
price uncertainty. They propose a robust optimization (RO) model and
show that the results are not significantly different to the deterministic
case. Possible RO is not the best technique to deal with price uncertainty,
and we plan to explore alternatives in the last year of the thesis.
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• [34] is another base paper used in this study. They formulate a two-
stage stochastic program to solve an open pit mine planning problem,
using ore grade uncertainty, capacity constraints and the expected value
of net present values. Also, they compare their results using different
approaches: obtaining their planning policies using different grades of
uncertainty and mining method and comparing them against the expected
value with perfect information. This work is our main reference for the
stochastic scheduling problem.

• [4] is one of the few papers available where they deal with mining problems
using price uncertainty by using two different risk measures. The authors
focus on underground operations, and use multistage stochastic program-
ming to solve the problem. They consider risk aversion in the objective
function, using the value-at-risk and variations of the conditional value-
at-risk as risk measures to the nested formulation of risk averse models,
and apply their findings to a pension fund problem.

• [22] advocates for the use of chance constraints in mining scheduling
problems. The authors consider ore uncertainty and the chance-constraint
is imposed to enforce a minimum and maximum amount of ore production
at each period with high probability. The authors propose a formulation
but do not solve, so one cannot know what are the changes in terms of
policy when using chance constraints.

• [33] study the ultimate pit mining problem and propose a methodology
to estimate the profit obtained by each block using data from drills. In
their approach, profit is computed for each scenario, and then the average
profit is calculated. Results show that such methodology gives superior
returns when compared to the traditional case of using the average grade
estimation on the profit function. This paper will serve as a basis for our
work, and we want to expand their findings by including uncertainty into
the optimization problem, and using risk measures to understand how the
ultimate pit changes.



Chapter 3

An algorithm for binary
chance-constrained
problems using IIS

3.1 Introduction

Chance-constrained programming (CCP) is a modelling framework to address
optimization problems under uncertainty. The resulting problems are notori-
ously difficult to solve, mainly due to the lack of convexity in the general case.
Even for continuous problems, explicitly evaluating whether a candidate point
is feasible is challenging, and Monte-Carlo methods are often employed. Aside
from very special cases, it is challenging to solve CCP to optimality, and ap-
proximations need to be considered.

CCP was first proposed in [12] and has been extensively studied since then.
We believe the main reason for its popularity is that CCP represents a very
natural and intuitive way for modelling uncertainty. In the typical case, the
decision maker optimizes a deterministic function, and randomness is present
in the constraints, with known distribution. A given point is feasible whenever
the constraints are satisfied with (at least) some pre-defined probability level.
In other words, the search of the optimal solution is restricted to points that
satisfy the random constraints for a “large” percentage of the realizations of the
random vector.

Aside from being an intuitive modelling tool, CCP is simpler than two-
stage stochastic programming problems in terms of parameter specification. In
some situations there is no recourse action after a decision is made, and even
when recourse is available, estimating the second stage cost coefficients can be
challenging. Finally, CCP captures risk aversion since a chance constraint can
be viewed as a Value-at-Risk (VaR) constraint.

13



14 CHAPTER 3. BINARY IIS ALGORITHM

A general linear CCP problem can be written as follows:

min f(x)

s.t. Ax ≥ b,
P{T (ω)x ≥ h(ω)} ≥ 1− α, (3.1.1)

x ∈ X .

The objective function f(·) is convex in x ∈ Rn, and in most applications it is
linear. The constraints defined by matrix Am1×n and vector bm1×1 represent
the m1 deterministic constraints of the problem. For instance in a portfolio
problem one could impose no short sales, and that the sum of all investments
has to be equal to one. We assume ξ is a d-dimensional random vector with
probability distribution P supported on a set Ξ ⊂ Rd, T is a m2×n matrix and
h is a m2×1 vector. When m2 > 1 we have joint chance constraints, which will
be dealt with separately in this paper since this case needs special treatment.
The chance constraint has to be satisfied with probability at least 1− α, where
α ∈ [0, 1) is the desired reliability level defined by the decision maker. Finally,
the set X can be continuous, integer or binary.

Several algorithms have been proposed for different versions of the problem.
When matrix T has dimension 1×n and ξ follows a multivariate normal distribu-
tion, the chance constraint can be converted into a second order conic constraint,
which can be solved efficiently by off-the-shelf solvers ( [1], [27], [45]). For prob-
lems where randomness is only present on vector h, the concept of p-efficient
points can be applied, which allows the construction of tractable equivalent for-
mulations for the CCP (see [17] for the discrete case and [38] for the continuous
one). The method was extended by [29] to include mixed-integer variables.

The Sample Average Approximation (SAA) is a popular approach whose
advantages are that both matrix T and vector h can be random, and that the
distribution is arbitrary, as long as samples can be obtained from it ( [32],
[36]). When the original distribution is continuous, or discrete with a very
large number of scenarios, SAA consists in generating samples and constructing
an approximate problem that is tractable. It can be shown that under mild
conditions the optimal solution (or set of solutions) and optimal value of the
sampled problem converge to their deterministic counterparts as the sample
size increases. CCP continues to attract the attention of researchers, and recent
publications focused on other approaches such as the study of mixing sets ( [2],
[26]) and boolean functions [30], among others.

The class of problems that received less attention are the ones with pure
binary variables, that is, X = {0, 1}n. In [3] and [42] the authors propose
algorithms for specific versions of important binary problems. In [40] the authors
propose an algorithm based on p-inefficiency points to solve several instances
of the probabilistic set covering problem. The focus of this paper is on a new
general algorithm for linear CCP with binary decision variables. The CCP
can have either separated or joint chance-constraints, and in both cases the
technology matrix and right hand-side vector can be random. The main idea is
to use infeasible irreducible subsystems (IIS) to obtain cuts that can speed the
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convergence of the algorithm. IIS were used in the context of CCP in [43], and
the authors report significant reductions in terms of nodes explored and time
with respect to the determinist equivalent formulation. However, the authors
address the X = Rn case with an individual chance constraint, and do not
consider binary variables in the formulation.

Our methodology uses the functionalities of commercial solvers to generate
IIS cuts. When the problem is infeasible with all scenario constraints included,
the IIS identifies the source of infeasibility and indicates the constraints that
should be removed to achieve feasibility. Interestingly, our methodology also
addresses the feasible case, that is, even if a solution is available when all sce-
nario constraints are considered, IIS can help find better solutions by removing
some scenarios. For the feasible case, we introduce an additional constraint on
the objective function value, and look for solutions that improve on the best
upper bound obtained so far. In addition, our approach uses the fact that
since X = {0, 1}n, we are able to estimate the minimal improvement that can
be achieved in terms of the objective function value at each step. Through
extensive computational experiments performed on separated and joint chance-
constrained problems, we show that our approach can significantly decrease the
number of nodes explored when compared to solving the problem directly using
a commercial solver.

The rest of the paper is organized as follows. We start by defining IIS,
providing examples and building the connection with CCP. In Section 3.3 we
describe the formulations we will be working with, and the results we need in
order to establish the validity of our approach. In Section 3.4 we describe the
algorithm and discuss some implementation aspects. Section 3.5 presents the
numerical experiments, and finally Section 3.6 concludes the paper.

3.2 Infeasible irreducible subsystems

In this section we give a brief introduction on IIS, and discuss how this idea can
be applied to chance-constrained problems.

3.2.1 The deterministic equivalent formulation

In this work, we focus on chance-constrained problems with linear objective
function and linear constraints. When the distribution of the random parame-
ters is finite and belongs to set Ω, with |Ω| = S, problem (3.1.1) can be written
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in the following deterministic equivalent formulation:

DEP: min c′x

s.t. Ax ≥ b,
T (ω)x+Mzω ≥ h(ω), ∀ ω ∈ Ω, (3.2.2)∑
s∈Ω

pωzω ≤ α,

zω ∈ {0, 1}S , x ∈ X ,

where pω is the probability of each element in Ω, and M is a constant that
guarantees feasibility whenever zω is equal to one. Problem (3.2.2) can also be
used when the distribution of the random parameters is continuous, or discrete
with an infinite number of possible realizations. In those cases, a sample of size
S is generated and formulation (3.2.2) can be regarded as an instance of a SAA
problem. It can be shown (e.g. [32]) that optimal solutions and the optimal
value converge to their exact counterparts. Guidelines can be found in [10]
and [11] as to how to choose the sample size S such that with arbitrarily high
probability the solution obtained in the SAA instance is feasible to the original
problem.

For simplicity, we refer to formulation (3.2.2) as the deterministic equivalent
formulation (DEP). For moderate sizes of S, the DEP can be solved directly; it is
often the case that such approach is not efficient, mostly because the formulation
contains the so-called big-M constraint, and relaxations tend to be very poor.
The focus of this work is to solve the DEP efficiently when X is binary, and in
what follows we will discuss how IIS can help on this task.

3.2.2 Irreducibly infeasible subsystems

Given a set of constraints Q, an IIS is a subset P ⊆ Q such that

a) It is infeasible;

b) Any constraint p that is removed from P turns the resulting subsystem
P\{p} feasible.

Example: Consider the following set of constraints Q (Figure 3.1):

Q = {x1 − x2 ≤ 0, (A)

2x2 ≤ 1, (B)

x1 + x2 ≥ 2, (C)

x2 ≥ 1, (D)

2x1 + x2 ≥ 3}. (E)

It is easy to check that the following sets are IIS with respect to Q:
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Figure 3.1: The set Q.

P1 = {(A), (B), (C)},
P2 = {(A), (B), (E)},
P3 = {(B), (D)}.

In the continuous case with linear constraints, the work [21] provides a
method to identify IIS that amounts to solve a linear problem. For other classes
of problems, e.g. a nonlinear system of inequalities, specialized methods and
approximations exist, and we refer the reader to the monograph [13] for details.

3.2.3 IIS and CCP Problems

In [43], in order to strengthen the DEP formulation (3.2.2) the authors generated
cuts based on IIS. In their paper, the set X was continuous and they used
the results of [21] to derive the cuts. To understand their approach, let us
consider that the set Q of all S scenario constraints form an infeasible system.
Of course this does not mean that the problem itself is infeasible: by removing
scenarios such that sum of the respective probabilities remains less or equal to
α, the problem must become feasible at some point (otherwise it was infeasible
originally). The difficulty lies in choosing the correct constraints to be removed,
that is, the constraints that lead both to feasibility and to the maximization of
the objective function.

The first step is to consider a simplified version of problem (3.2.2), called the
pure scenario problem (PSP), obtained by removing the knapsack constraint in
problem (3.2.2):

PSP: min c′x

s.t. Ax ≥ b,
T (ω)x ≥ h(ω), ∀ ω ∈ Ω, (3.2.4)

x ∈ X .
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If PSP is infeasible, by using [21] one can find an IIS, which naturally gen-
erates a cut for the DEP. For instance if constraints corresponding to scenarios
1, 4 and 7 form an IIS, the corresponding constraint, or cut, to be added to the
DEP is

z1 + z4 + z7 ≥ 1.

Such constraint forces one of the scenarios that belong to this IIS to be left out
of the problem. In [43] the authors propose a branch-and-cut algorithm on the
variables z that searches for the best scenarios to be removed in the CCP. They
report excellent computational results for an extensive set of instances.

It is not necessary to have an infeasible set of scenario constraints to justify
the use of chance constraints. It may well be the case that the problem is
feasible if all scenarios are included, and the purpose of the chance constraint
is to improve the objective function value by removing some scenarios. In this
situation, which refer to as the feasible case, it is not clear how IIS can be useful,
since there is no infeasibility in the set of constraints. However, when we modify
the PSP to include a constraint in the objective function value, infeasibility
appears as a way of improving the quality of the solution. In other words,
the question in this context is which constraints should be removed in order to
improve the objective function value by at least some pre-specified amount. We
refer to this formulation as PSPwO, and it can be written as follows:

PSPwO: min c′x

s.t. Ax ≥ b,
T (ω)x ≥ h(ω), ∀ ω ∈ Ω, (3.2.5)

c′x ≤ u− ε,
zω ∈ {0, 1}S , x ∈ X ,

where u is an upper bound on the objective function value, obtained for ex-
ample when solving the problem with all scenarios, and ε is an arbitrary value
that defines the desired decrease in terms of objective function value. If the
problem is infeasible it means that it is not possible to improve on the current
bound with all scenarios in place. In this case an IIS is found, which necessarily
contains the last constraint in PSPwO, and also other scenario constraints. As
in the PSP problem, a cut can be constructed such that at least one of the
constraints stopping the improvement in terms of objective function value has
to be removed.

As we will see later, the choice of ε is extremely important in the performance
of the algorithm. It is tempting to choose large values of ε in order to obtain
quick improvements, but if the desired decrease is too large one may have to
remove more constraints than allowed by α, which works as a budget on how
many constraints can be removed. On the other hand, small values of ε may
be too conservative, slowing down the computations. In [43] the authors do not
report the value they worked with, and no experiments are performed comparing
the performance of different choices. We will discuss in detail those issues in the
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numerical experiments, and propose a scheme to choose the optimal ε in some
sense.

For the binary case, that is, when X = {0, 1}N , we are not aware of a result
as simple as the one devised in [21] to identify IIS. It is not the purpose of this
work to propose a method or an heuristic to obtain IIS for binary problems,
so whenever we need to generate one we use in-built functions of commercial
solvers for that purpose. We tried to obtain more details of how those functions
work, but there is very little information in the solvers’ websites. Therefore, we
use the functions as blackboxes that generate IIS whenever needed.

3.3 Strategies to solve binary CCP

In the previous section we described IIS and how they can be used to solve CCP,
following the ideas described in [43]. In addition, by using in-built functions of
commercial solvers one can in principle address the binary case. In this section
we describe two fundamental ideas that make use of the structure of CCP, and
of the fact that we are dealing with binary variables.

3.3.1 Efficient Upper Bound Generation

In every algorithm it is important to find upper bounds mainly for two reasons:
to keep track of the best candidate as the algorithm advances, and to have a
stopping criteria for termination. It is often the case that obtaining an upper
bound is time consuming, and computing it at every iteration can slow down the
algorithm significantly. Whenever the problem was feasible in [43], the authors
used the PSP problem to obtain upper bounds. In the case where the PSP is
feasible, the problem remains feasible as scenarios are removed. In this case, as
long as the sum of the probabilities of the scenarios removed is less or equal to
α, the solution of the PSP problem without those scenarios is feasible to the
original problem (3.1.1).

We tried a similar approach for the binary case and the results were not sat-
isfactory. The reason is that in our case PSP is a binary problem, and it is more
demanding to solve than its continuous counterpart. In most cases, the time
taken to compute upper bounds represented as much as 80% of computation
time, which is not desirable for larger instances. We simply could not compute
upper bounds as often as in the continuous case, but we still needed good upper
bounds for fathoming nodes in our algorithm, and for closing the gap quickly.
Our approach to deal with this problem is based on the following proposition:

Proposition 1. Consider subsets P and Q of Ω such that P ⊂ Q ⊂ Ω, and
that ∑

ω∈Ω\P

ps ≤ α,

that is, the sum of the probabilities of the elements that do not belong to P is
less or equal to the reliability level α. For a set A ⊆ Ω, let xA be an optimal
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solution and vA the optimal value of problem (3.2.4) restricted to constraints
defined by A. Assuming PSP is feasible when all scenarios are present, we have
that

1. The solution xΩ of PSP with all scenarios, is feasible for the original
problem, and the optimal value vΩ is an upper bound for the true optimal
value v∗.

2. The solutions xP and xQ are feasible to CCP, and therefore the optimal
values vP and vQ are upper bounds for v∗.

3. The optimal values of the original problem and of the PSP problem based
on sets P,Q and Ω satisfy

v∗ ≤ vP ≤ vQ ≤ vΩ.

Proof.

1. As PSP is feasible when all scenarios are present, the optimal solution xΩ

of PSP is feasible to the original problem (3.2.2) when we fix zω = 0,∀ω ∈
Ω. Therefore vΩ ≥ v∗.

2. For the set P , the optimal solution xP of the PSP problem with P scenarios
could violate the remaining scenarios constraints. However, by hypothesis
the sum of the probability of scenarios belonging to Ω\P is less or equal
to α. Therefore, by fixing zω = 1 for those scenarios we have a feasible
solution to problem (3.2.2). The proof for Q is immediate since P ⊂ Q.

3. Since P ⊂ Q ⊂ Ω, the result follows from 1 and 2.

Inspired by Proposition 1, our idea is to compute upper bounds only when
the budget α is fully used, that is, only when one has removed as many scenarios
as possible from PSP. For instance, suppose we have 100 scenarios, each one with
the same probability, and α = .05. This means five scenarios can be removed.
We will only solve PSP when five constraints are removed from the set Ω: upper
bounds obtained with a smaller number of constraints removed are likely to be
worse than the ones obtained when the budget is completely used.

3.3.2 The choice of ε for binary problems

In the feasible case, in order to make use of IIS we add a constraint to PSP that
accounts for solution quality. When the problem is feasible, the difficulty is not
in finding a feasible solution after a constraint is removed, since any removal
will generate a feasible solution because the feasible set is being enlarged. The
problem is to choose the constraints to be removed such that the objective
function value will decrease.
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The value of ε should be such that all vectors which generate a decrease of
at least ε in the objective function should be considered. In principle, one would
have to use a very small ε, e.g. 10−5, in order to avoid excluding candidates
that may be optimal for the original problem. However, such small values of ε
slow the algorithm down considerably, as improvements in the upper bound at
every step are marginal.

In the discrete case more can be said about the choice of ε. The following
proposition assures the existence of an optimal ε:

Proposition 2. Let x∗ be an optimal solution of problem (3.2.2), and x̄ be a
feasible solution for the problem such that u = c′x̄ > c′x∗. Then, there exists
ε > 0 that does not eliminate any vectors from problem (3.2.5) that improve the
objective function value and satisfy Ax ≥ b.

Proof.
Let W = {x|Ax ≥ b, c′x < u}. By hypothesis, the set W is nonempty: the
optimal solution x∗ ∈ W. We define ε as follows:

ε = min
x∈W

max{u− c′x, 0}. (3.3.6)

Since our feasible set is finite (and W is nonempty), the minimum in problem
(3.3.6) will be attained, leading to a positive value of ε. Moreover, by the
construction of the setW, all vectors that improve on the value of u and satisfy
Ax ≥ b are considered.

Unlike the continuous case, Proposition 2 gives a constructive way of finding
a value of ε that guarantees a decrease in terms of objective function value
without excluding any potential candidate. However, the result is not practical
to implement since we would have to enumerate all vectors x that satisfy Ax ≥ b.
Nevertheless, inspired by the constructive proof of Proposition 2, we propose
solving an alternative problem to find a value of ε:

min
ε,x

ε

s.t. ε ≥ u− c′x,
ε ≥ 0, (3.3.7)

u− c′x ≥ δ,
Ax ≥ b,
x ∈ {0, 1}n,

where δ > 0 is a small enough number that serves the purpose of forcing the
problem to move away from the current upper bound. This formulation allows
us to find the smallest improvement (that is greater than δ) over the current
upper bound u without having to enumerate all possible solutions. We will
see that in practice the value of ε obtained by solving problem (3.3.7) provides
excellent guidance for our numerical scheme.
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In formulation (3.3.7) we are exploiting the fact that our decision variables
x are binary. If the decision variables were integers problem (3.3.7) becomes
challenging and it would slow down our numerical procedure significantly. Since
binary variables are bounded, off-the-shelf solvers can quickly find a solution to
problem (3.3.7).

3.4 The algorithm

In this section, we present our numerical scheme that uses IIS to solve binary
CCP. First, we will define some auxiliary formulations that correspond to inter-
mediate steps in the procedure, and then we present the step-by-step description
of the algorithm. Finally, we show a proof of convergence.

3.4.1 Preliminaries

Let N be the set of open nodes indexed by k in a branch-and-bound (BAB) tree
on the zω variables, ω ∈ Ω. Let a path from node k to the root node of the BAB
tree be denoted by τ(k). We define Uk as the set of scenarios associated with
nodes in τ(k) such that zω = 1, and P(Uk) ≤ α. Similarly, define Lk ⊆ Ω as the
set of scenarios associated with nodes in τ(k) such that zω = 0. The following
formulation is similar the PSP problem, but it is restricted to scenarios that
have not been removed yet:

PSP2k: min c′x

s.t. Ax ≥ b,
T (ω)x ≥ h(ω), ∀ ω ∈ Ω \ Uk, (3.4.8)

x ∈ Bn.

As stated in §3.2.3, if (3.4.8) is feasible for Uk = ∅ (i.e. the root node) then
we can add to PSP2k the constraint c′x ≤ u − ε, where u is the current upper
bound. Now let Sj be an IIS of (3.4.8) and Dj := {ω ∈ Ω : T (ω)x ≥ h(ω)∩Sj 6=
∅}. If (3.4.8) is infeasible, we can obtain an IIS Sj that determines the set Dj .
Then the IIS inequality

∑
ω∈Dj zω ≥ 1 is valid for (3.2.2) by construction. Given

the sets Uk and Lk, the problem to solve at node k is:
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PSP3k: min c′x

s.t. Ax ≥ b,
T (ω)x+Mzω ≥ h(ω), ∀ ω ∈ Ω \ {Uk ∪ Lk},
T (ω)x ≥ h(ω), ∀ ω ∈ Lk,∑
ω∈Ω\{Uk∪Lk}

pωzω ≤ α−
∑
ω∈Uk

pωzω, (3.4.9a)

∑
ω∈Dj

zω ≥ 1,∀j ∈ τ(k), (3.4.9b)

x ∈ Bn, z ∈ BS .

By adding an IIS inequality (3.4.9b) at a particular node of the BAB tree, at
least one scenario is excluded from the nodal problem so that the total number
of nodes to search in the BAB tree is reduced. Moreover, we note that constraint
(3.4.9a) is updated based on scenarios already removed in the scenario tree, that
is, belonging to the set Uk.

3.4.2 IIS branch-and-cut algorithm

A detailed description is given in Algorithm 1.

Algorithm 1 IIS branch-and-cut algorithm (IISBAC)

1: Initialize: Set L1 = ∅,U1 = ∅, n1 = (L1,U1),N 1 = {n1},K = 1, u =
∞, l = −∞.

2: Node Choice: Pick some node nk ∈ N according to some search rule. If
N = ∅, then terminate execution.

3: Solve LP: Solve (3.4.9) relaxing the integrality on the z variables. This
will either find an optimal solution (x̄, {z̄ω}ω∈Ω), or that the problem is
infeasible.

4: Fathoming Rule: If the node relaxation is infeasible, or c′x ≥ u, then
fathom the node and return to 1. Otherwise, solve (3.4.8). If (3.4.8) is
feasible, then set zω = 0,∀ω ∈ Ω\Uk obtaining a feasible integer incumbent,
update the upper bound and go to 2. Otherwise go to 5.

5: IIS Cut Generation: Obtain the set Dj using some IIS search method.
If Dj 6= ∅, then add the cut

∑
ω∈Dj zω ≥ 1 and go to 3. Otherwise, improve

(if possible) the upper bound u and go to 6.
6: Branching: Pick a non-integer z variable using some branching rule. Cre-

ate new nodes nk+1 = (Lk ∪ zω,Uk) and nk+2 = (Lk,Uk ∪ zω). Add these
nodes to N , set k = k + 2 and go to 3.

In our implementation, we used Proposition 1 to improve the algorithm in
step 4. Given a set Uk, we define Q = Ω\Uk. By removing additional scenarios
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from Ω and adding them to set Uk such that the budget α is not exceeded,
we construct the set Uk′ ⊃ Uk, and define P = Ω\Uk′ ⊂ Q. Following the
third claim of Proposition 1, the upper bound obtained using the set P is less
than or equal to the one based on set Q. It is important to highlight that such
scheme is only valid for the computation of the upper bound: the cut is always
constructed based on the original set Uk.

Our algorithm works like a standard branch-and-cut algorithm, as we are
only adding an intermediary step in order to add our cuts using the information
obtained by the IIS. This algorithm still relies on finding lower bound (improved
by our cuts) and upper bounds (improved by our checking step, when possible),
and closing the gap between them as the termination criterion.

Fathoming nodes is important to speed up the process of finding the optimal
solution. We have two rules: fathoming by optimality or infeasibility. The
former can be applied by checking the upper bound (step 2), the latter by
not being able to find an IIS that relies on stochastic constraints (i.e. all IIS
members are rows of the A matrix). Termination is guaranteed by the following
proposition.

Proposition 3. The IIS branch-and-cut algorithm terminates in a finite num-
ber of iterations and finds the optimal solution if it exists.

Proof. In order to prove finiteness, consider we are solving our problem (3.2.2)
with n + S binary variables, then we have 2n+S possible combinations of solu-
tions, thus in the worst case we might explore all possible solutions, which are
finite.

Now, we must prove that the algorithm does not remove the optimal solution.
As we have discussed before: there are two main cases to consider. If (3.2.4) is
infeasible in the root node, and assuming (3.2.2) has an optimal solution, the
algorithm focuses in cutting infeasible leaves, which are a subset of the 2n+S

possible combinations. Therefore, we are reducing the number of combinations
to explore, while avoiding cutting the optimal solution. Since we are solving
(3.4.9), we are always checking feasibility in the knapsack, then the solution
will be feasible (3.2.2).

There is another case to consider: if problem (3.2.4) is feasible at the root
node. While we select an ε > 0, the algorithm cuts feasible leaves of solution
combinations and by construction the upper bound improves each time, since we
will fathom all nodes that have a worst bound than the incumbent upper bound.
This means we are not cutting nodes which might contain the optimal solution,
since they have solutions which yield values strictly smaller than our current
upper bound. Henceforth, we are reducing the number of nodes to explore.

As mentioned, obtaining an IIS for binary problems is involved, and we
use function ComputeIIS() of the model class provided by the solver Gurobi.
As mentioned, our focus is not on finding a method to obtain and IIS with
binary variables, instead we concentrate on obtaining valid cuts using an IIS.
Unfortunately, there is no documentation about how this function works, and
we have no control over it.
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3.5 Numerical experiments

We present two sets of experiments: first, consider a joint chance-constrained
version of the probabilistic set-covering (PSC) problem, as described in [7]. In
the problem matrix T has dimensions m2 × n, m2 > 1. This means that we
have a set of m2 constraints inside the chance-constraint. The only source of
randomness in this problem is vector h(ω), with dimensions m2 × 1. Further-
more, the coefficients of the objective function and the entries of matrix T are
binary. As we will show, we need to pre-process the problem in order to solve it
efficiently. In addition, writing the cut derived by the IIS is more challenging in
this situation because we have joint chance-constraints. The zω variables have
a different meaning in this case: whenever zω is equal to one, a whole block of
m2 constraints is removed, rather than a single constraint. Since the IIS ora-
cle returns constraints, it is not clear how to move from constraints to blocks
for IIS cut construction. We propose a rule that tells us how many and which
blocks to remove given the set of constraints belonging to the IIS, and tested
our approach on several instances of the PSC problem.

The second experiment is a vaccine allocation problem, where T (ω) is a 1×n
matrix and h(ω) ∈ R, for all ω ∈ Ω. In this case, the application of IIS cuts
is direct: whenever a constraint belongs to an IIS, it is added as an element
in the cut. The coefficients in the objective function are non-integers, and we
will show that it is very important in this case to choose ε appropriately. This
problem was analyzed in [43] for continuous variables.

The objective of our experiments was to validate the methodology and to
reduce the number nodes explored in the IISBAC algorithm compared to a
standard solver. In this sense, we want to compare number of nodes explored,
which does not depend on the programming language used to implement the
algorithm. For the sake of completeness, we also compare running times.

In our experiments we used an implementation of IISBAC algorithm in
Python 3.6.2 using Gurobi 7.5.1. The experiments were run on an Intel(R)
Xeon(R) CPU E5-2670 @ 2.60GHz (using 8 threads), 32 GB of memory and
running CentOS 6.8.

3.5.1 Stochastic Set Covering Problem

The formulation for this problem as described in [7] is given as follows:

PSC: min c′x

s.t. Tx+ zω ≥ h(ω), ∀ ω ∈ Ω,∑
ω∈Ω

zω ≤ bSαc, (3.5.10)

zω ∈ BS , x ∈ Bn.

Problem (3.5.10) is a joint chance-constrained problem, so each scenario ω cor-
responds to a block of constraints. The difficulty here is that the IIS routine
returns the constraints to be removed, while we need to decide on the blocks to
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be removed. The cuts based on IIS would still be valid, and would eventually
reach the optimal solution. However, we could not reach the optimal solution
for most instances. We realized that in this particular case, we could use a
heuristic: let the cut length l be the amount of blocks that will belong to the
cut (i.e. the amount of zω variables present in the cut). So, by bounding the
cut length to a fixed number, we will only include the first l blocks selected by
sorting them in nondecreasing order of the number of constraints that are part
of the IIS, which is the output given by the solver. For instance assume l = 2
and we have three blocks of constraints, each with eight constraints ordered
accordingly. If constraints 1, 9, 12, 15, 18 and 22 are part of an IIS, we would
add the cut z2 +z3 ≥ 1 because the first block has only one constraint belonging
to the IIS (constraint 1), and blocks 2 and 3 have three (9, 12 and 15) and two
constraints (18 and 22), respectively.

Results

There was a preprocess step used to reduce the number of stochastic constraints
in this problem. We use α = 0.1 for this problem, and fr instance in the case of
1,000 samples our removal budget is equal to 100. Since only the right hand side
is random, whenever we have more than 100 copies of a constraint the budget
is not enough to eliminate of such constraint. In this case, since the constraint
will have to be satisfied, we added it as a row of the system Ax ≥ b. Using this
simple technique, which surprisingly was not done automatically by Gurobi,
allowed the solver to handle the instances considered in the experiment.

Table 3.1 shows the performance of both Gurobi and IISBAC using different
cut lengths for 200 replications, with sample sizes ranging from 100 until 10,000.
The mean value of ε was 1, with a variance at most O(10−10) among the repli-
cations. To understand the effect of the cut length parameter l, we used values
between 1 and 50. It can be seen that as l increases, the values obtained by
IISBAC converge to the optimal value found by Gurobi. This requires exploring
a larger number of nodes, and taking more time on average. The PSC scp41

from [6] is a joint chance-constrained problem with blocks of size 200, which
makes it extremely challenging to solve it. Our main purpose was to show that
IIS can handle this problem if l is sufficiently large, and that the computational
times and nodes explored remain in the same order of magnitude as Gurobi’s.

We believe significant time reductions can be achieved by using more so-
phisticated implementations of the IISBAC. Regarding nodes explored, Gurobi
identifies the structure of the PSC problem and uses sophisticated cuts in order
to explore less nodes. It seems that for other joint chance-constrained problems
IIS cuts could have a significant impact, and could reduce the total numbers
explored by a significant amount. The heuristic shows promising results for the
joint chance-constrained case, but further research is needed to fully test more
criteria in terms of choosing a cut length, or the prioritization to select which
scenarios to choose for the cut. Our findings show that if optimality is not crit-
ical, very good solutions (within 1% of the optimal) can be found quicker than
Gurobi by using smaller cut lengths. By finding good candidates quicker, we
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Sample
Average Gurobi

IISBAC Cut Length l
Size 1 2 5 10 20 50

100

Nodes 2.5 2.7 2.8 2.7 2.7 2.8 4.3
Obj. Val. 377.0 378.4 378.1 377.8 377.6 377.3 377.0

Cuts - 0.1 0.1 0.2 0.2 0.4 0.0
Time (s) 0.1 6.2 7.8 9.5 13.7 18.2 32.9

1,000

Nodes 1542.3 927.0 3092.0 3142.5 3551.7 2661.0 2089.6
Obj. Val. 382.9 383.8 383.4 383.1 383.0 383.1 382.9

Cuts - 3.5 4.6 5.3 6.2 6.9 0.0
Time (s) 17.0 50.2 101.2 100.4 111.4 109.2 130.3

5,000

Nodes 921.0 1043.9 1937.9 1401.7 1537.3 1774.7 1254.0
Obj. Val. 381.1 381.3 381.2 381.2 381.1 381.1 381.1

Cuts - 2.7 2.8 3.6 3.4 3.0 0.0
Time (s) 168.5 247.8 380.1 344.4 398.4 393.2 264.9

10,000

Nodes 3.3 8.7 6.5 11.8 12.4 11.6 7.6
Obj. Val. 380.1 380.2 380.1 380.1 380.1 380.1 380.1

Cuts - 2.3 2.4 3.2 3.3 3.3 0.0
Time (s) 90.5 144.2 146.1 156.9 163.1 176.0 176.5

Table 3.1: Comparison of performance between Gurobi and IISBAC using different
sample sizes in scp41.

could use this approach to give the solver a good starting point. If optimality
is critical, then larger cut lengths are needed, possibly combined with another
cutting generation procedure to speed up the method.

In order to gain a deeper understanding of our approach, we also applied
this methodology for PSC problems scpe1 (blocks of size 50) and scpa1 (blocks
of size 300). For scpe1 IISBAC found the optimal solution when using 1,000,
5,000 and 10,000 samples in less than 600 seconds. Moreover, for those smaller
instances the computations were not sensitive to the cut length, and the algo-
rithm visited less nodes than Gurobi.

Table 3.2 describes the results for scpa1, and in this case a time limit of
7,200 seconds was imposed given the size of the problem. Results show that
IISBAC obtained solutions within 2% of the optimal, and the number of nodes
explored is smaller than Gurobi’s. The effect is more salient as the sample size
increases, showing the potential of IISBAC for solving linear large-scale joint
chance-constrained problems.



28 CHAPTER 3. BINARY IIS ALGORITHM

Sample
Average Gurobi

IISBAC Cut Length l
Size 1 2 5 10 20 50

1,000

Nodes 622.54 436.97 396.94 417.72 449.81 467.06 454.87
Obj. Val. 232.16 233.89 233.74 233.54 233.34 233.24 233.05

Cuts - 4.34 4.29 4.53 4.26 4.69 4.94
Time (s) 44.09 6345.88 6486.21 6321.03 5545.52 6174.03 5928.11

5,000

Nodes 346.14 83.63 84.075 84.37 85.25 86.4 89.16
Obj. Val. 232.4 234.43 234.28 234.18 234.04 233.87 233.68

Cuts - 4.34 4.22 4.69 4.07 4.54 4.32
Time (s) 725.01 6379.05 6450.75 6998.06 6754.95 6844.34 6919.18

Table 3.2: Comparison of performance between Gurobi and IISBAC using different
sample sizes in scpa1.

3.5.2 Vaccine Allocation Problem

The formulation for this problem is:

VAC: min c′x

s.t. Ax = 1,

T (ω)x+Mωzω ≥ 1, ∀ ω ∈ Ω, (3.5.11)∑
s∈Ω

zω ≤ bSαc,

zω ∈ BS , x ∈ Bn.

The objective is to minimize the cost of assigning vaccines between families
in a given sector (given by the A matrix), while bounding the probability of
spreading the contagion between these families (given by the T matrix). In this
case, it was needed to use a SAA approach to obtain samples of size S from
the random variable. As stated before, for every ω ∈ Ω we have that T (ω)
represents just one constraint.

Table 3.3 presents the problem sizes for the test instances. As can be seen,
the number of decision variables stays constant, equal to n = 302, and the
number of rows in the A matrix is fixed in 30. Nonetheless, the number of
scenario variables (and rows) increases depending of the sample used. Therefore,
S ranges from 100 until 2,000. As stated in [43], these instances are difficult
to solve because the MIP formulations are large and dense. We included a last
column which describes the number of scenarios that can be violated at the
same time in an incumbent solution (we consistently used the value α = 0.05).

Results

First we present a summary of our findings, and then we highlight some salient
features of our approach. Figure 3.2 shows a comparison between the perfor-
mance of Gurobi and IISBAC algorithm throughout the different instance sizes.
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Instance Rows Decision vars. Scenario vars. Knapsack budget∗

vac100 131 302 100 5
vac250 281 302 250 12
vac500 531 302 500 25
vac750 781 302 750 37
vac1000 1,031 302 1,000 50
vac2000 2,031 302 2,000 100

Table 3.3: Problem sizes for vaccination test instances. ∗α = 0.05

The node reduction, defined as the ratio of nodes explored between Gurobi and
IISBAC was on average 90.78%, and on larger instances it was over 99%. This
is a remarkable difference with respect to the joint case, which indicates that
individual constraints, or possible joint chance-constraints with moderate values
of m2, could benefit from our approach.

In terms of time, Gurobi is able to outperform IISBAC on small instances,
but the solution times are comparable when we used 1,000 samples. Even though
we are using a language suitable for prototyping, our implementation was faster
than Gurobi for the larger 2000-sample instances. Our explanation is that as
the problem becomes larger, more effort is necessary to solve the problem as new
constraints and binary variables are being added. Thus, as complexity rises, any
help to reduce said effort is going to have a significant impact on the solver’s
performance.

Figure 3.2: Performance comparison between instances.

We ran more tests with different values of ε in this formulation, since it
is easier to solve than the PSC. We were consistently lowering the number
of nodes explored, which was our objective, but we noticed that the variance
of the ε’s calculated by (3.3.7) was at most O(10−2) with mean 0.3076. The
practical conclusion is that problem (3.3.7) is essential to the performance of
the algorithm, but it does not need to be solved more than once.
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To stress this fact, we note that using different values of ε will produce very
different outcomes: if ε < 0.3076, IISBAC will produce smaller improvements
on the upper and lower bounds, which in turn means more nodes to explore.
We were able to detect that for values close to 0.001, the amount of nodes can
quickly surpass Gurobi’s count. On the other hand, if ε > 0.3076 then the
optimal solution could potentially be cut from the tree.

Table 3.4 zooms in on larger instances considered for this problem, consisting
of 1,000 and 2,000 samples. On average, the IISBAC algorithm explored between
0.01% and 2% of the total nodes of Gurobi, with less computational time in half
of the instances. We detected that the first node added was able to improve the
upper bound obtained by Gurobi up to 0.1% over the optimal value in every
case (between the first 3 minutes of running time), while the rest of the time
was spent to close the gap by improving the lower bound via cuts.

Gurobi IISBAC Gurobi IISBAC IISBAC Info
Sample Time Nodes Node Red. % Cuts

vac1000a 2,936 4,344 144,904 2,910 97.99% 169
vac1000b 1,000 3,229 156,803 2,362 98.49% 213
vac1000c 3,449 10,045 1,056,888 1,275 99.88% 168
vac1000d 6,488 2,943 1,945,060 1,365 99.93% 176
vac1000e 2,437 2,503 546,318 1,536 99.72% 9
vac2000a 51,456 14,980 3,335,160 3,438 99.90% 255
vac2000b 30,218 83,717 1,540,281 5,827 99.62% 474
vac2000c >100,000∗ 66,066 >12,184,026∗ 9,325 99.92% 661
vac2000d 84,524 24,043 4,555,042 3,626 99.92% 310
vac2000e 69,259 25,623 6,034,681 4,127 99.93% 292

Table 3.4: Larger samples (1,000 and 2,000) results using α = 0.05. ∗ final gap 1.5%.

Finally, the second half of Table 3.4 shows promising results. IISBAC ex-
plores less than 1% of the nodes that Gurobi explores on average, while doing
so in less time than the solver: we can observe solving times being around 25%
those of the solver. Note that instance vac2000c using Gurobi was only able to
reach a gap of 1.5% after 600,000 seconds (almost 7 days), when it was decided
to interrupt the computations.

As can be seen with the vaccine problem, the IISBAC algorithm is able to
reduce the effort in solving this problem, and as the amount of samples used
to solve the problem increases, so does the effectiveness of the IIS cuts applied.
We were able to observe that while the solver works on the root node of the
branch-and-bound tree, the first nodes added by IISBAC algorithm are able to
obtain on average an upper bound within 1% of the optimal value, while the
rest of the time was an effort to close the lower bound, using the cuts.

It is important to highlight that when α is greater than or equal to 0.1 the
problem becomes more complex. The combinatorics for the possible ways of
choosing which constraints can be violated increases, and both Gurobi and our
algorithm provide unsatisfactory solutions. For α = .1 Gurobi cannot reduce
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the optimality gap to less than 5% after two hours in any of the 1,000 and 2,000
samples instances. The same happened with IISBAC: the gap was around 20%
in most instances under the same time limit, while the number of nodes explored
was around .02% of the nodes explored by Gurobi. In personal communications
with a senior developer of Gurobi we concluded that this vaccine problem is
especially challenging because some of the coefficients are of small magnitude
small compared to the objective function value coefficients. We believe that for
other linear binary binary chance-constrained problems IISBAC would perform
better for values of α greater or equal to 10%.

3.6 Conclusions

In this paper, we propose a novel methodology to solve binary chance-con-
strained problems building on [43]. In particular, we develop improvements for
finding upper and lower bounds by using the structure of the problem to our
advantage. A salient feature of our approach is the idea of adding a constraint
that can improve on the quality of the solution at every iteration, which allows
us to handle cases where the problem with all scenarios in place is feasible.
We solve an auxiliary problem that allows to define the maximum possible
improvement at every iteration, and the efficiency depends directly on the fact
that our decision vector is binary.

The algorithm can handle joint and individual linear CCP, and we tested
our approach on a probabilistic version of the set covering problem, and on a
vaccine allocation problem. In the first case, a joint CCP, some extra work is
required to convert the output of the IIS generator to cuts that remove blocks
of constraints, and a heuristic was implemented to handle the priority in which
these blocks should be added. Computational results, on problems with 50,
200 and 300 constraints per scenario (we considered up to 10,000 scenarios)
indicate that the method finds the optimal solution for cuts with length 50,
and finds solutions within 1% of the optimal for smaller cut lengths, with less
computational effort. For individual CCP computational results show that in
many instances we reduced drastically the number of nodes explored, and in
some cases the computational time was comparable to Gurobi even though we
did not aim at maximum computational efficiency.

The main goal of the paper was to establish IIS as a tool to solve binary
CCP. For the joint case more research is needed to reduce computational times,
and for the individual case the results indicate that significant gains in terms of
speed can be achieved using our methodology. A natural extension of the cur-
rent work would start with problems with a single chance-constraint, and move
gradually to more complex joint CCP, in order to gain a better understanding of
the impact in performance of moving from constraint removal to block removal.
For higher values of the reliability level α the results were unsatisfactory, both
with Gurobi and our algorithm. We believe it is due to the small magnitude of
some coefficients in the constraints with respect to the constants in the objec-
tive function. Further research is needed in order to be able to cope with the
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combinatorial explosion that occurs when more constraints are allowed to be
violated. On the applications side, binary CCP arise often in natural resource
management problems, in particular in mining applications where the decision
variables are whether or not to remove a block from the mine. Uncertainty is
present via ore prices or grade distribution, and the objective is to maximize
net present value of the operations, a description that fits into the framework
developed in this work.



Chapter 4

The risk-averse ultimate pit
problem

4.1 Introduction

A fundamental problem in open-pit mining is the determination of the ultimate
pit (UP), which consists in finding the contour of the mine that maximizes the
difference between profits obtained from minerals minus extraction costs. The
problem is formulated on a representation of the mine into blocks of a certain
size, taking into account engineering requirements such as slope and precedence
constraints. The formulation of the UP problem can traced back to 1965: the
seminal paper of [31], which was one of the first to propose an algorithm to
solve this problem, and their methodology has been widely used in the mining
industry.

The UP problem is relevant in practice mainly for two reasons: first, it
gives an estimate of the total mineral that can be potentially extracted from
an economical point of view. Second, the solution allows one to generate the
so-called nested pits: by solving the problem for different prices (or “revenue
factors”) of the mineral it is possible to obtain a sequence of pits such that higher
prices generate larger pits that contain the previous ones. Such nested pits are
the input for heuristics capable of generating a long term order of extraction
of different sectors of the mine. Moreover, they provide an estimation of the
different sizes of the pit under less favorable price conditions.

The vast majority of work in the UP problem assumes the parameters of the
problem are known. In particular, the ore distribution is inferred by drilling,
using techniques from geostatistics, such as kriging [16]. Such estimates are
usually an approximation, and determining the ultimate pit by replacing the
ore distribution by a single number per block, such as the average grade, can
have negative consequences. There are few works that incorporate the distribu-
tion of ore grades into the UP problem. In [33] the authors use expected profits
in the objective function, and conclude that larger profits can be obtained by

33
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incorporating uncertainty into the UP formulation with respect to the deter-
ministic case, and that the relative gains of the stochastic approach increase
with the treatment costs. In [19] the authors move one step further and study
the risk-averse UP problem, replacing the expected value by risk measures such
as the Conditional Value-at-Risk (CVaR) [39] which has been widely used in
applications such as finance and energy.

We propose a detailed study of the risk-averse UP problem, assuming that
the grade of each block follows a known distribution. First, we discuss desir-
able properties—risk-nestedness and additive consistency—that a risk measure
should have in defining the UP, and show that the only risk measure that satis-
fies those properties is the entropic risk measure. In particular, the CVaR does
not satisfy any of these properties and is probably not the best choice to capture
risk-aversion in the mining context. Second, we derive conditions under which
the entropic risk measure generates nested pits by varying the risk-aversion level
of the decision maker.

We apply our methodology to a small case study of a self-constructed in-
stance to illustrate the gains of our approach. We also validate methodology on
a real-world mine. Furthermore, we show how ore grade uncertainty can dras-
tically change the solutions obtained, while the current methodology remains
stoic to the stochastic nature of the ore grade.

The structure of this paper is as follows: Section 4.2 is an overall view of
the UP problem, and we present a two-stage stochastic formulation as well as
summarize the concept of nested pits. In Section 4.3 we define risk in the UP
problem and propose desirable properties risk measures should have. In Section
4.4 we show the results of our methodology using a small instance to visualize
the differences between the our and the classic methodology, and using a real
mine to show the potential of its use in real life instances. Section 4.5 concludes
the work and points out futures avenues of research.

4.2 Ultimate Pit problem and nested pits

4.2.1 UP problem

Deterministic version

The UP problem consists in finding the last set of blocks to be extracted in
order to maximize the value of the mine, respecting precedence constraints. It
is assumed that capacity is unlimited and that the ore can be mined immediately,
in the sense that time considerations are left out of the formulation. In other
words, the UP solution gives the contour of the mine without specifying when
the blocks will be extracted.

We will define the parameters which will be used in the paper.

• B: set of blocks of the mine.

• P ⊆ B × B: set of precedences for every block in the mine, that is, if
(b, b′) ∈ P then in order to extract block b we must extract block b′.
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• ceb: cost of extracting block b.

• cpb : cost of processing block b.

• rb: profit for processing block b in the case that its grade is 1.0.

• gb: ore grade of block b.

Parameter rb includes, among other factors, the tonnage of the block, the
recovery of the metal after processing the block, and the price of the metal in
the market. As a convention, ce := {ceb}b∈B and cp := {cpb}b∈B will be defined
as the vector of all extracting costs and processing costs for every block b ∈ B,
respectively.

We can formulate the UP problem as the following mixed-integer optimiza-
tion problem:

UP(g, r) = min
xe,xp

∑
b∈B

(cpb − rbgb)x
p
b + cebx

e
b

s.t. xeb ≤ xeb′ ∀(b, b′) ∈ P,
xpb ≤ x

e
b ∀b ∈ B,

xeb, x
p
b ∈ {0, 1} ∀b ∈ B,

(4.2.1)

where the decision of extracting and processing each block b ∈ B is represented
by the binary variables xeb and xpb respectively. Since (4.2.1) is a minimiza-
tion problem we will assume costs as positive and benefits as negative values, a
convention we will use throughout the paper. The first set of constraints repre-
sents the extraction precedents for every block and the second set of constraints
condition the processing of a block to its extraction.

UP with uncertainty on ore grades

The first step to develop a risk-averse model is to define a way to handle ore grade
uncertainty for each block. In practice, formulation (4.2.1) is commonly solved
by assuming gb is deterministic, usually the mean value of different scenarios
given by a geostatistical model.

For each b ∈ B, let g̃b be the random variable the represents the ore grade
of block b. With this modification, the UP problem under uncertainty can be
formulated as a two-stage stochastic optimization problem in which first stage
variables represent block extraction, and in the second stage we have processing
decisions, given extraction decisions taken in the first stage problem and the
observed ore grade of extracted blocks. The two-stage stochastic UP problem
can be formulated as follows:

UPU := min
xe

∑
b∈B

cebx
e
b + ρα[Q(xe, g̃, r)]

s.t. xeb ≤ xeb′ ∀(b, b′) ∈ P,
xeb ∈ {0, 1} ∀b ∈ B,

(4.2.2)
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where

Q(xe, g̃, r) := min
xp

∑
b∈B

(cpb − rbg̃b)x
p
b

s.t. xpb ≤ x
e
b ∀b ∈ B,

xpb ∈ {0, 1} ∀b ∈ B.

(4.2.3)

Function ρα : L1 → R will be defined as a deviation or risk measure, which
deals with the uncertainty of the ore grade in the second stage. The parameter
α ∈ R, whose range depends on the risk measure ρα under consideration, rep-
resents the risk-aversion of the decision maker. The work [33] did an extensive
investigation when ρα = E, showing the importance of using the stochastic UP
problem versus the deterministic version, and how it affects the pits obtained.

4.2.2 Nested pits

Usually, after the UP is established, mine planners run a complete scheduling
model that defines in which period each block, or clusters of blocks, will be
extracted. To this end, they solve UP(g, (1− β)r) as in (4.2.1) where β ∈ [0, 1[
is a multiplier of the benefit rb. Figure 4.1 shows the pits generated by solving
a small instance of problem (4.2.1) with β1 > β2 > β3 > β4.

Figure 4.1: Example of nested pits.

As seen in the figure, the solution of UP(g, (1 − βi)r) will be a subset of
blocks for any solution of UP(g, (1 − βi+1)r) where βi > βi+1. This property
is known as nested pits, and it is widely used in the mining context (for more
information, please refer to [9, 23, 31]). These pits are an important input for
scheduling heuristics to determine the future workload and planning effort in
mining.

Such methodology can be seen as a simple heuristic to deal with ore and
price uncertainty. Using larger values of β translates into smaller pits where it
is safe to start working as the mineral found in that pit justifies the extracting
and processing costs even in low price scenarios. However, since ore grade is
assumed to be deterministic, this approach does not capture the effects of ore
grade variability directly.
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An important aspect in our work is to propose an adequate risk measure ρα
for mining problems, and to be able to solve problem (4.2.2)-(4.2.3) efficiently.
Uncertainty of the ore grade is taken into account, and we want to derive con-
ditions under which nested pits are obtained by varying the parameter α.

4.3 Risk measurement

4.3.1 Defining risk under ore grade uncertainty

In order to select the appropriate risk measure for the UP problem, we need to
define which are the desirable characteristics in the pits generated by a given
risk measure ρα. First, it needs to yield nested pits by varying α: conservative
pits must be contained in riskier pits. The ability to generate nested pits based
on parameter variation should be considered as a mandatory property for a risk
measure since mine exploitation scheduling uses nested pits as a main input.
The precise definition of risk nestedness is as follows:

Definition 1. Assuming as the level of risk-aversion of the decision maker
rises then the value of α ∈ R increases and the ore grades are independently
distributed, a risk measure ρα is risk nested for the UP problem if for α1 > α2

the set of extracted blocks in the optimal solution of problem (4.2.2) obtained by
using ρα1

is contained in the set obtained using ρα2
.

The CVaR is a commonly used risk measure thanks to its tractability. Fol-
lowing [39], the CVaR can be defined as

CVaRα[X] = min
η∈R

{
η +

1

1− α
E(−X − η)+

}
, (4.3.4)

where X is a random variable and (a)+ := max(a, 0). Remark that α ∈ [0, 1[. A
value of zero corresponds to the risk-neutral case and as α approaches one the
risk measure protects against the worst-case realization. The next proposition
shows that it may not be the ideal risk measure for stochastic UP problems
under our requirements.

Proposition 4. The CVaR risk measure is not risk-nested for the UP problem.

Proof. We will prove that the CVaR is not risk-nested with a counter-example:
let three blocks be positioned as in Figure 4.2.
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Figure 4.2: Three blocks.

In order to extract block X or Y , we must extract block Z (i.e. Z is a precedence
of X and Y ). Let the ore grade of the three blocks be independent of each other
and normally distributed. If W ∼ N(µ, σ2) is normally distributed with mean
µ and variance σ2, then

CVaRα(W ) = µ+
σ2

(1− α)
√

2π
e−z

2
1−α/2, (4.3.5)

where z1−α is the (1 − α)-quantile of the standard normal distribution. Let
X̃ ∼ N(−2, 18), Ỹ ∼ N(1, 0) and Z̃ ∼ N(−4, 10) be the random variables that
represent the negative profit of each block.
Table 4.1 shows the results of computing the CVaR using (4.3.5) for different
values of α. It can be seen that with α = 0.05 it is optimal to extract blocks X
and Z, but with α = 0.1 the optimal solution is to extract Y and Z. Finally
with α = 0.5 the preferences are such that it is better not to extract any blocks.
Since 0.1 > 0.01, extracting Y and Z and then X and Z shows that the CVaR
is not risk nested.

α
Combination of blocks 0.05 0.1 0.5

Nothing 0 0 0
X + Y + Z -1.96 0.46 17.34
X + Z -2.96 -0.54 16.34
Y + Z -1.91 -1.05 4.98

Table 4.1: Comparison of mining preference under CVaR.

A second desirable property is related to the consistency of extracting de-
cisions. Current geostatistical techniques assume a dependence over ore grades
within blocks of the mine that are physically near, but this dependence dimin-
ishes as we select blocks that are far from each other. In other words, assuming
two blocks of the mine could be represented as X and Y , the decision of mining
X instead of Y should not depend whether we are now considering another block
Z which could be far from blocks X and Y , or of a different geological compo-
sition, acting as an independent random variable. In summary, we believe it is
desirable that a risk-measure used in mining satisfies the additive consistency
property:

Definition 2. Let X,Y and Z be random variables where Z is independent
of both X and Y , and ρα(·) be a risk measure where α is the risk level of the
decision maker. If ρα(X) < ρα(Y ) and ρ is additive consistent, then

ρα(X + Z) < ρα(Y + Z).
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Definition 2 states that decisions over a block, area, phase or cluster of
blocks should not depend on the uncertainty of independent elements within
the mine. In [14] the authors proved that the only risk measure that complies
with additive consistency is the entropic risk measure. Given the uniqueness
showed in [14], we will focus our attention in the entropic risk measure and
examine its suitability for risk-averse UP problem (4.2.1).

4.3.2 The Entropic risk measure

Let X be a random variable. The entropic risk measure of X at level α is defined
as

ρEntα [X] :=

{
1
α logE[eαX ] if α 6= 0,

E[X] if α = 0.

If α > 0, the decision maker is risk-averse, α < 0 means risk-seeker, and α = 0
corresponds to the risk-neutral (expected value) case. We will focus on non
negative values of α. The entropic risk measure (Ent) is convex, but is not
coherent [5, 14] as shown in Appendix A.2, Lemma 5.

Our objective is to show that Ent is a viable risk-averse tool for the stochastic
UP problem:

Lemma 1. The entropic risk measure is risk nested when ρα = ρEntα in problem
(4.2.2).

Proof. Proof is available in Appendix A.1.2

As a convention, if we are indifferent to whether extract a block or not, we
will always choose to extract the block to avoid issues that could potentially
yield non-nested pits solutions in problem (4.2.2).

In the next section, we will exemplify our approach using different config-
urations of uncertainty in the ore grade of the blocks of a mine, and compare
the pits obtained to the same solution we would obtain by using the commonly
used nested pits approach fixing the ore grade to its mean value.

4.4 Computational results

We present two sets of results: first, we consider a small-sized mine which was
designed to illustrate the properties and methodologies we propose in this paper.
The second mine is a real life instance with a large number of blocks to test the
applicability of our methodology in a realistic environment.

We will provide a comparison of the results using different risk measures, and
discuss the practical implications and managerial insights of the pits obtained
with each method. We implemented all models in Python 3.7.2 and Gurobi 8.1,
running on an Intel(R) i7 CPU 7700HQ @ 2.80 GHz and 12 GB of memory over
Windows 10.
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4.4.1 Small mine

This mine has 36 blocks in a two dimensional configuration, and is defined in
terms of its topology and ore grade configuration. Figure 4.3 shows the topology
of the mine, and the precedences were configured as follows: if a block is to be
extracted, then the blocks on top, right and left of the block on top must be
extracted, emulating a 45-degree slope angle.

Figure 4.3: Topology of the small mine: blue means the block is part of set of
precedent blocks of block b.

One of our goals is to study the behavior of using Ent as a risk measure
versus the solutions obtained by using the classical nested pit methodology.
In the next Lemma we show that, under normality, we can solve the problem
directly, avoiding the use of sampling.

Lemma 2. If the ore grade of the blocks follows a multivariate normal distri-
bution g̃ ∼ N(µ,Σ) where µ is the vector of mean values and Σ is the variance-
covariance matrix, then problem (4.2.2) for the entropic risk measure can be
formulated as a mixed integer program with a convex quadratic objective func-
tion (MIQP)

Proof. See Appendix A.1.3 for the proof.

Using Lemma 2, we use a multivariate normal distribution for the ore grades
obtaining the following equivalent formulation for UP with Ent:

min
xe,xp∈XEP

∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbḡb)x
p
b +

1

2
α
∑
b∈B

∑
b′∈B

rbx
p
brb′x

p
b′Σbb′ , (4.4.6)

where XEP is the same feasible set of solutions for problem (4.2.2). Problem
(4.4.6) is convex given that matrix Σ is positive semidefinite, and it is amenable
to be solved by Gurobi.

Results

We present the results for the following choice of parameters: ceb = 0.5, cpb =
0, rb = 1 ∀ b ∈ B. Since we have the closed quadratic formulation (4.4.6), we
can calculate the exact distribution of the negative profits for each tested model.
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The small mine was created as shown in Figure 4.4: the mean negative
profit of extracting and processing any of the colored blocks as yellow (1) and
red (2) always pays its extraction and its precedences. The red blocks have
a variance greater than 0 and all possible pairs of red blocks have a positive
covariance, while the yellow block has a variance of 0. We included the yellow
block because we want to study the behavior of the models where there are
blocks with no uncertainty to be extracted. All other blocks (blue) are waste,
with grade gb = 0.

Figure 4.4: Configuration of the blocks in the small mine.

The different pits for Ent are shown in Figure 4.5. It is interesting to note
the evolution of the pits when we multiply the parameter Σ by some positive
constant: as variability grows, the optimal pit configuration changes for the
same values of α. The sub-figures show the evolution of the pits using the
following values:

• Green (1): α = 0, risk neutral case.

• Yellow (2): α = 0.1.

• Orange (3): α = 0.5.

• Red (4): α = 1.

Note that if any of these values (or colours) are missing, is because the pit
obtained is the same as the pit obtained by using a higher value of α, i.e., in
Figure 4.5b the optimal solution using 0.5 and 1 are the same.

As uncertainty becomes larger, the pits obtained show a conservative evolu-
tion: as α grows the optimal solution pit obtained becomes smaller. In Figure
4.5c we see that for any value of α > 10 all pits obtained extract the yellow
block. Therefore, if variability in the ore grade is high then Ent will provide
pits with small differences between the solutions when changing the value of
α. Please note that, while our objective was to observe problem (4.2.2) using
Ent under different conditions of uncertainty, we observed that the solutions
obtained were nested, even if the covariance of the ore grades between some of
the blocks are not 0.

The same analysis can be performed using the current practice in the indus-
try, namely solving problem (4.2.1) and using different values of β (the classical
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(a) Σ. (b) 2Σ.

(c) 10Σ.

Figure 4.5: Configuration of the pits obtained with different values of α and changing
the variance-covariance configuration.

nested pits methodology) to this mine. Note that this methodology doesn’t con-
sider the variance of the grades, only its mean values. Since the mean value is
constant, we get the same pits even in scenarios of high uncertainty. Figure 4.6
shows this, the configuration of matrix Σ does not change the optimal solutions
found by using different values of β as described in Section 4.2.2. The evolution
of these pits is obtained using the following values:

• Green (1): β = 0, risk neutral case.

• Red (2): β = 0.5.

• No blocks are extracted : β ≥ 0.7.

Figure 4.6: Configuration of the pits obtained with different values of β.

The definition of risk between models differs: Ent is aiming at controlling
variability, and its most conservative result has variance 0. For the nested pit
case, since we are manipulating the price, for values of β close to 1 the mining
profit is small compared to the costs of extraction and processing, which means
the corresponding pit will be small, and in the limit will correspond to not
extracting any block.

In summary, for a self-constructed small mine the classical approach has the
tendency of being overly conservative for some values of β, avoiding extraction
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altogether. Moreover, the classical approach is completely insensitive to changes
in the correlation between blocks, which is alarming. We can clearly see how
variability becomes an important factor with the Ent approach, and how it is
controlled by the choice of α: conservative values aim for small but less variable
expected profits.

4.4.2 Andina case

The Andina mine is an open pit mine that belongs to Codelco, Chile’s state-
owned company that controls around 20% of global reserves. Andina is located
in Rio Blanco (approximately 80 km NE of Santiago) and is still active after
82 years. A sector of the mine is represented by 26,400 blocks, and the ore
distribution is approximated by 120 scenarios generated from a set of drilling
holes via conditional simulations using the turning bands algorithm [18].

Since this mine does not have a multivariate normal distribution of ore grades
we cannot use the closed quadratic formulation (4.4.6). We tried to solve the
problem directly on a smaller version of Andina (less than 100 aggregated blocks)
using non-linear optimization solvers (AMPL/MINOS) to check if we could han-
dle the real mine with its 26,400 blocks. The solver was not able to close an
optimality gap of 99.9% after 5 hours running, which means it is hopeless to try
to attack the problem directly.

Ent is a non-linear function, and since we have integer variables the resulting
risk-averse UP problem is extremely challenging to solve for larger mines. How-
ever, given the convexity of the exponential function, we can use a piecewise
linear approximation of the objective function. In order to accomplish this, we
modify the objective function of (4.2.2) thanks to the translation invariance of
Ent (please refer to Lemma 6) and the monotonicity of the log function. All nec-
essary proofs and final model which approximates the value of problem (4.2.2)
using Ent can be found in Appendix A.3.

Results

We divide the set of 120 ore grade scenarios in a subset of 20 samples which is
used to solve the problem, and the remaining 100 are used for the out-of-sample
analysis.

Our piecewise linear approximation was designed to be an uniform grid be-
tween integers -20 and 20 with steps of 0.01 (4,000 steps in total), because
Gurobi treats values below 10−8 as 0, and exp(−20) ≈ 2.06 · 10−9. Therefore,
we calculated a scaling factor and we changed the NumericFocus parameter of
Gurobi to its maximum value in order to give more processing power in the
numerical calculations, and to avoid numerical issues given the small numbers
that will be used by our model. We use the mean absolute deviation (MAD) to
check the performance of our approximation.

We denote by NP the results obtained by the nested pit methodology. In
each case, we evaluate the total profit of the resulting ultimate pit on each of the
out-of-sample scenario independently. This give us a set of 100 values for each
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solution. We also compare these values with the lower bound (LB) obtained
solving problem (4.2.1) fixing gb to each scenario. LB will have a different pit
and negative profit per scenario, serving as a benchmark of the best possible
result. Also, we present the variance coefficient (VC), which is the ratio between
standard deviation and average of the profits.

Table 4.2 shows the results for NP, while changing the value of β. If β ≥ 0.7,
the solutions obtained have less than 100 blocks extracted and for β ≥ 0.9
it doesn’t extract blocks, therefore these results are omitted. This behavior
was already shown in the small mine example in the previous section: con-
servative values of β will incur in avoiding extraction altogether. However, as
risk-averseness grows, the VC becomes larger (6.9% in average).

Model LB NP 0 NP 0.1 NP 0.2 NP 0.3 NP 0.4 NP 0.5 NP 0.6
Upit blocks - 15,775 12,738 7,303 4,218 1,963 816 310

Average -132.1 -121.4 -110.7 -86.5 -64.5 -43.2 -24.6 -12.4
VC - 5.9% 5.6% 5.3% 5.6% 6.3% 8.1% 11.0%

% vs LB 91.9% 83.8% 65.5% 48.8% 32.7% 18.6% 9.4%

Table 4.2: Table of descriptive statistics for NP of the out of sample results.

Table 4.3 shows the results for Ent. We observe a larger amount of blocks
extracted in the pit of the neutral case, and using larger values of α the pits
obtained have less blocks. Please note, as risk-averness grows, the value of the
VC becomes smaller (5.6% in average). The MAD for different values of α are
of order O(10−5) in the worst case, showing that our linear approximation is
effective. Values for α > 12.5 are not present in the table since the model incurs
in numerical errors: the solution obtained was an empty pit.

Model LB Ent 0 Ent 7.5 Ent 10 Ent 12.5
Upit blocks - 21,770 19,545 14,810 11,273

MAD - - 2.62E-07 2.55E-07 2.92E-07
Average -132.1 -128.8 -125.6 -110.7 -98.6

VC - 5.9% 5.7% 5.3% 5.4%
% vs LB - 97.5% 95.1% 83.8% 74.6%

Table 4.3: Table of descriptive statistics for Ent of the out of sample results.

Figure 4.7 shows the negative profit obtained per scenario of Ent, NP and
LB on each of the testing set ore grade samples, sorted by the results of LB and
using different value of α and β respectively.
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Figure 4.7: Negative profits per scenario for the Andina case.

Figure 4.8 shows a cross sectional view of the pit, where we can observe
the differences on the optimal solutions of Ent and NP. We used α = 10 and
β = 0.03 to obtain pits with a similar number of blocks extracted (14,810 in
Ent versus 14,983 in NP.). We can see both models aim for different sections of
the mine.

Figure 4.8: Comparing pits of both models.

The importance of these results are the effective application of an approxima-
tion method to prove Ent as a viable tool for risk-aversion in real life instances
of mining optimization problems. The error obtained in the approximation to
the real value of the exponential function is of order O(10−5), which was within
our acceptance tolerance and Gurobi was able to solve the approximation for-
mulation in an average time of under 5 minutes for all the values of α.
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4.5 Conclusions

In this paper, we formulate and discuss how to solve the risk-averse UP prob-
lem. We start by describing two properties that a risk measure should satisfy
in this context: risk nestedness and additive consistency. Risk nestedness is a
fundamental property since modern mine scheduling algorithms use the idea of
nested pits as an input for generating a sequence of block extractions over time.
Additive consistency is a desirable property that is intuitive in the sense that
it preserves preferences in the presence of independent waste blocks. An inter-
esting consequence of our work is that one of the most popular risk measures,
the Conditional Value-at-Risk, fails to satisfy both properties even in the case
of blocks with independent distribution, calling into question its use in mining.

In a small simulated mine we contrast results for the current methodology
of changing sale prices to obtain nested pits, the classical nested pit (NP) ap-
proach, and the proposed Entropic risk measure methodology (Ent). The former
behaves as expected: we obtain different pits that vary from mining everything
up to avoid working on the mine altogether in the most conservative cases. The
Ent approach shows a different behavior: we obtain a different pit transition as
we vary the level of risk-aversion, more focused on avoiding variance within the
results, thus high uncertainty scenarios will have smaller pits than low uncer-
tainty cases for the same value of α.

We apply our method to a real-life mine (Andina, in Chile) and use a linear
approximation to efficiently solve the risk averse problem with the entropic
risk measure. Our results show the approximation errors were within tolerable
margins, validating the linear approximation scheme. Future work includes
extensions to our numerical algorithm to be able to cope with larger mines
with millions of blocks, and the study of dynamic risk-averse models for mine
scheduling problems.
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Appendix A

Risk-averse UP Problem

A.1 Mathematical proofs

A.1.1 Risk-nestedness for the UP problem of the entropic
measure

Lemma 3. Let α1, α2 ∈ R, with α1 > α2. For any random variable X we have
that ρEntα1

(X) ≥ ρEntα2
(X).

Proof. We will show that the objective function of (4.2.2) increases monotoni-
cally with α > 0 (since α = 0 is the expected value case and a < 0 is the risk
seeking case). Let us define f(X,α) as:

f(X,α) =
1

α
logE[eαX ],

where X is a random variable. Now, let us study the behavior of the first partial
derivative over α:

∂

∂α
f(X,α) =

1

α2

(
E[αXeαX ]

E[eαX ]
− logE[eαX ]

)
.

Let Y = eαX , then:

∂

∂α
f(X,α) =

1

α2

(
E[Y log Y ]

E[Y ]
− logE[Y ]

)
=

1

α2

(
E[Y log Y ]− E[Y ] · logE[Y ]

E[Y ]

)
.

Since 1
α2 > 0 and E[Y ] = E[eαX ] > 0, we just need to study the sign of the

numerator in the partial derivative. Let h(Y ) = Y log Y , then:

E[Y log Y ]− E[Y ] logE[Y ] = E[h(Y )]− h(E[Y ]).
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Finally, since h(Y ) is a convex function (∂
2h(Y )
∂Y 2 = 1

Y > 0) then by using Jensen’s
inequality we know that E[h(Y )] − h(E[Y ]) ≥ 0, therefore f(X,α) increases
monotonically.

Lemma 3 ensures the monotonic behavior of Ent w.r.t. the value of α.

Lemma 4. Let X,Y are two independent random variables and 0 < α < ∞,
then

ρEntα (X + Y ) = ρEntα (X) + ρEntα (Y )

Proof. Please refer to [14] for the proof.

A.1.2 Proof of Lemma 1

Proof. Let g̃b be the random variable of the ore grade for each block b ∈ B and
assume they are independently distributed, and let α1, α2 ∈ R where 0 < α2 <
α1 <∞. Suppose that a certain block b is in the pit obtained by solving (4.2.2)
using Ent with α1, but is not present in the pit under the same problem solved
by using α2. Let U1 be the pit obtained in the first case and U2 the second case.

Since extracting 0 blocks is a feasible solution and ρEntα (0) = 0 for α > 0
then we know that ρEntα1

(U1) ≤ 0. Furthermore, ρEntα1
(U1\U2) ≤ 0, else U1 ∩ U2

would obtain a better value for α1 but U1 is the optimal solution which would
be a contradiction.

By using Lemma 3, since α2 < α1, then ρEntα2
(U1\U2) ≤ ρEntα1

(U1\U2) ≤
0. But then the pit U2 ∪ (U1\U2) is also feasible and by Lemma 4 we have
that ρEntα2

(U2 ∪ (U1\U2)) = ρEntα2
(U2) + ρEntα2

(U1\U2) ≤ ρEntα2
(U2), which is a

contradiction of the optimality condition of U2, finishing the proof.

A.1.3 Proof of Lemma 2

Proof. Let g̃ ∼ N(µ,Σ) then let Z be as follows:

Z :=

(∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg̃b)x
p
b

)
→ N(µ′, σ′2),

where
µ′ =

∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbḡb)x
p
b ,

and

σ′2 = (r ◦ xp)TΣ(r ◦ xp)

=
∑
b∈B

∑
b′∈B

rbx
p
brb′x

p
b′Σbb′ ,

where operator ◦ is the Hadamard (element-wise) matrix product.
We can verify that E[eαZ ] is the moment generating function of a univariate

normal distribution, which in turn corresponds to:
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exp

(
αµ′ +

1

2
α2σ′2

)
.

Therefore, we obtain the following equivalent formulation:

min
xe,xp∈XEP

ρEnt

(∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg̃b)x
p
b

)
= min
xe,xp∈XEP

µ′ +
1

2
ασ′2,

where XEP is the same feasible set of solutions for problem (4.2.2), and since
Σ is s.d.p., the proof is finished.

A.2 Other Lemmas and Propositions of interest

Lemma 5. The entropic risk measure is not a coherent risk measure.

Proof. Let X be a random variable and a ≥ 0. We have:

ρEntα (aX) =
1

α
logE[eαaX ].

If β = αa, then

ρEntα (aX) =
a

β
logE[eβX ]

= aρEntβ (βX) 6= aρEntα (X).

Therefore, Ent is not positive homogeneous, finishing the proof.

Lemma 6. The entropic risk measure is a translation invariant risk measure.

Proof. Let X be a random variable and a ≥ 0. We have:

ρEntα (X + a) =
1

α
logE[eα(X+a)]

=
1

α
logE[eαXeαa]

=
1

α
log eαaE[eαX ]

=
1

α
(log eαa + logE[eαX ])

=
1

α
(αa+ logE[eαX ])

=
1

α
logE[eαX ] + a

= ρEntα (X) + a.

Therefore, Ent is translation invariant, finishing the proof.
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Proposition 5. If ρ(·) = E[·], then formulation (4.2.1) is equivalent to (4.2.2).

Proof. It can be seen that in formulation (4.2.2) we are using two sets of vari-
ables: xe set of blocks to be extracted and xp set of blocks to be processed. In
(4.2.3) we have the constraint xpb ≤ xeb ∀b ∈ B, which limits the possibility to
process a block only if it is extracted in the first place, then for a certain block
b the cost in the objective function can be one of three possible values:

1. 0 if the block is not extracted, i.e. xeb = 0.

2. ceb if the block is extracted but not processed, i.e. xeb = 1 and xpb = 0.

3. cpb − rbgωb + ceb if the block is extracted and processed, i.e. xeb = 1 and
xpb = 1.

As (4.2.3)’s objective is to minimize the negative profit of processing the
blocks given g̃, then the decision can be stated as:

xpb =

{
1, if cpb < rbg

ω
b ,

0, if cpb ≥ rbgωb .

On the other hand, the expression ceb − E[(rbg̃
ω
b − c

p
b)

+] can assume exactly
the same three previously described options. Since we can pre-compute the
value of E[(cpb − rbgωb )+], ∀b ∈ B, we can eliminate the use of a second set of
variables. If xb = 1 in (4.2.1) it means that the block must be extracted whether
is waste or is going to be processed.

A.3 Entropic risk objective function lineariza-
tion

The risk-averse UP problem using Ent can be written as

min
xe,xp,ω∈XEPΩ

1

N

∑
ω∈Ω

exp

(
α

(∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg
ω
b )xp,ωb

))
, (A.3.1)

where Ω is the domain of the random variable gb and

XEPΩ :={xe ∈ {0, 1}|B|, xp,ωb ∈ {0, 1}|B×Ω| : xeb′ ≤ xeb ∀(b, b′) ∈ P,
xp,ωb ≤ xeb ∀b ∈ B, ∀ω ∈ Ω}.

We will use two auxiliary variables: vω and zω, where∑
ω∈Ω

vω ≥
1

N

∑
ω∈Ω

exp(zω).
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The strategy here is to use an approximation of the exponential function for
each term in the sum of the objective function in (A.3.1), using the auxiliary
variable vω. Problem (A.3.1) is equivalent to the following problem:

UPe := min
xe,xp∈XEPΩ

∑
ω∈Ω

vω

s.t. zω ≥ α

(∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg
ω
b )xp,ωb

)
∀ω ∈ Ω,

Nvω ≥ exp(zω) ∀ω ∈ Ω,

vω ≥ 0 ∀ω ∈ Ω.

(A.3.2)

The non-linear constraint of (A.3.2) will be replaced by a piecewise linear
approximation, detailed in the work of [37], for each constraint represented by
zω. For differentiable convex functions (such as f(x) = exp(x)), we can use
a lower approximation using the gradient at a given point ti: f(x) − f(ti) ≥
∇f(t)(x−tt). We will select a set of K points U := {t1, . . . , tK} to calculate the
value of ∇f(i) ∀i ∈ U and approximate the exponential function using linear
functions as shown in Figure A.1.

Figure A.1: Subgradient linear approximation of exp(x) using K = 4 support points
where U = {−2,−1, 0, 1}.

Using this in (A.3.2), we get the following constraints:

vω ≥ exp(uω − ti) + exp(ti) ∀ω, i ∈ Ω× U,

which in turn can be used to construct our approximated problem:
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UPA := min
xe,xp∈XEPΩ

∑
ω∈Ω

vω

s.t. zω ≥ α

(∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg
ω
b )xp,ωb

)
∀ω ∈ Ω,

vω − etizω ≥ (1− ti)eti ∀ω, i ∈ Ω× U,
vω ≥ 0 ∀ω ∈ Ω.

(A.3.3)


