

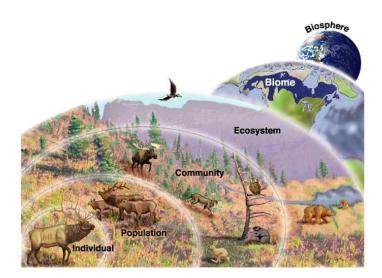
## UNIVERSIDAD ADOLFO IBÁÑEZ FACULTAD DE INGENIERÍA Y CIENCIAS PhD IN COMPLEX SYSTEMS ENGINEERING

# STUDY ON THE USE OF GENETIC FUNCTIONAL TRAITS TO CHARACTERIZE MICROBIAL COMMUNITIES

## **Salvador Ramírez Flandes**

Thesis Director: Dr. Bernardo González Thesis Co-director: Dr. Osvaldo Ulloa

# **Contents**


| Abstract                                                                              | 2   |  |  |
|---------------------------------------------------------------------------------------|-----|--|--|
| Chapter 1. Introduction                                                               | 3   |  |  |
| Chapter 2. Redox traits characterize the organization of global microbial communities |     |  |  |
| Manuscript text                                                                       | 6   |  |  |
| Supplementary Information Appendix (SI Appendix)                                      | 20  |  |  |
| Chapter 3. Protein coding potential of nucleotide sequences based on Kmers            | 115 |  |  |
| Manuscript text                                                                       | 115 |  |  |
| Supplementary Information Appendix (SI Appendix)                                      | 128 |  |  |
| Chapter 4. Conclusion                                                                 | 138 |  |  |
| References                                                                            | 139 |  |  |
| Published papers with affiliation to this program                                     |     |  |  |

### **ABSTRACT**

Biological communities are conventionally described as assemblages of species, whose ecological roles are known or predictable from their observable morphology. In microbial ecology, however, such a taxonomic approach is hindered by our limited knowledge of the functions of most microorganisms, which often alter their genetic material through diverse mechanisms. To tackle these problems, microbial ecologists have used culture-independent genetic approaches to study the whole pool of functional genes at the community level. However, this approach requires dealing with gene categories not necessarily related to the ecology of the organisms, such as functions associated with DNA replication or cellular division. In this work it is demonstrated that genes encoding oxidoreductases characterize the microbial communities better than other categories of genes, including those associated with taxonomy. Additionally, with this approach, the role of microbial communities of the different ecosystems in biogeochemical cycles becomes readily apparent. The importance of this result is, however, limited by the coverage of known genetic functions over the total pool of metagenomic genes, which is currently around the fifty percent in sampled metagenomes. To help increasing this reduced coverage of known functions, a methodology for the recognition of the protein-coding potential of DNA sequences is proposed. Alternative applications of this methodology are discussed. The results of this study pave the way for a better assessment and evaluation of microbial ecosystem services from different environments of our planet. This improved diagnostic of microbial ecosystems can be possible, for example, by focusing directly on the diversity of redox functions encoded in the metagenomes of microbial communities, rather than on their taxonomic structures. Thus, this approach should help in developing better management and conservation policies that effectively include not only iconic species or colonies, such as polar bears or coral reefs, but also microorganisms.

## **CHAPTER 1. INTRODUCTION**

In broad terms, Ecology is the study of the interactions among living organisms and their respective environments. The German zoologist Ernst Haeckel coined the word ecology in 1866, but early studies in this discipline can be traced back to ancient Greece, mainly associated with Aristotle. The organisms are a natural basic level of organization through which living entities in Nature can be described (Fig. 1), and their categorization into kinds or species (e.g., the use of the word "dog" to refer to any particular dog) might be one of the most ancient human tasks. However, as far as we know today, Aristotle was the first in writing records of an organized and hierarchical classification of organisms. This authoring recurrence is not surprising as ecology depends on a previous classification of organisms, and modern studies make use of a system based on the Linnaean taxonomy on this matter. In this context, the first attempts for establishing a mathematical theory of ecology were the works of Alfred Lotka and Vito Volterra in the decade of 1920, with the predator-prey model. The variables in the differential equations of mathematical models are numbers of species acting in specific ecological roles -predator and prey in this case. Most subsequent works since have used species numbers as the ecological unit to develop a body of theories to understand and predict the dynamics of populations and communities (1). The crucial aspects of this approach are the underlying assumptions that a) all individuals can be categorized into species, and b) the roles or functions of these interacting species are known for a proper setting of the parameters in the corresponding models.



**Figure 1.** The standard ecological organization. Individuals or organisms are at the basic level of the ecological organization, which aggregated as species compose a population. Agregations of populations in turn define a community, which taken together with environmental conditions make up an ecosystem. Similar ecosystems over the planet are called biomes, and the aggregation of all of the biomes on Earth finally constitutes the biosphere.

Leaving aside the philosophical debate that the concept of species have arisen in the context of evolutionary biology (2), researchers have struggled to find general laws in community ecology utilizing this species-centric approach (3, 4). One reason for this might be the fact that species are complex and dynamical constructs, with multiple potential ecological functions, thus capable of establishing numerous and changing interactions with other species. In this regard, some authors have claimed that community ecology has lost its way by focusing on pairwise species interactions; an approach that has succeeded in explaining few-species systems but that has failed in providing general principles about many species communities (5). These authors also suggest that a return to a trait and environment-focused route, highlighting how functional traits are distributed across gradients in the light of what characterizes the diverse niches should have success where the species-centric approach has not (5).

In microbial ecology, this situation acquires even greater relevance for several reasons. First, the observable attributes of most microorganisms do not provide sufficient discriminatory or functional characterization, making the concept of species been even more problematic in this context (6-8). Second, the isolation of microbial species to assess their physiology and ecological function is rarely possible, a phenomenon that is related to the so-called Great Plate Count Anomaly (9). Accordingly, it has been estimated that cultured bacterial species represent only a tiny fraction of the total bacteria species on Earth (10, 11). Third, prokaryotic genomes are highly dynamic, mainly due to pervasive horizontal gene transfers, genome streamlining (12, 13), and the effect of mobile DNA elements and phages (14, 15). Microbial ecologists have employed molecular taxonomic markers, primarily the small subunit ribosomal RNA gene (SSU rRNA gene), to address the first problem indicated above, thereby operationally defining species (16). Subsequently, culture-independent approaches for studying environmental DNA have been used to estimate the abundances and taxonomic diversity of microorganisms in their natural environments (17, 18). This approach has been termed metagenomics (19), and it is intended to address the second problem described above.

By assuming that the taxonomic structure of microbial communities is a sound predictor of their functioning, this approach has been utilized to explain the microbial dynamics in several specific environments (20, 21). When the taxonomic rank of species has been unable to produce detectable patterns, some authors have found ecological coherence at a coarser taxonomic level, such as phylum or class (22-25). However, several studies have reported plain taxonomical correlations under apparently similar ecological scenarios, finding consistency only when using multiple protein-coding genes as traits and when the whole community is analyzed as the ecological unit (26-31). After all, it is the function, not the taxonomic information that has the actual ecological relevance (32). This approach has been called whole genome metagenomics (18, 33) or shotgun metagenomics (34), and it represents an attempt to address the third abovementioned problem. Unfortunately, a selection of ecologically relevant

categories of protein-coding genes is not evident in the broad context of planetary biomes (9, 35, 36). The use of the whole pool of functional genes at the microbial community level (shotgun metagenomics) requires dealing with profiles comprising thousands of gene categories not necessarily related to the ecology of the microorganisms such as those associated with the DNA replication or cellular division, among many others.

In these conditions, it is natural to ask whether the use of the whole set of functional genes in a metagenome is the best way to characterize its corresponding microbial community, or if it is possible to establish a subset of them that can do better. The first step to answering that question is to precisely define what a characterization of a microbial community is. The second step is to define a procedure to compare such characterizations in order to establish which of them provide the most ecologically relevant view of the microbial communities. A third step would be to evaluate, or at least to explore if that presumed subset might be within the set of genes for which a function is not yet defined. This last possibility should not be neglected as roughly a half of the metagenomic sequences are currently regarded as without a known function (37, 38).

Those are the research topics of this thesis. Under the natural assumption that the abundances of genetic traits in the microbial communities are determined by the conditions of their corresponding environments, a characterization of a microbial community is defined as a set of relative abundances of genetic traits (gene profiles) that distinguishes it from those inhabiting different biomes. In Chapter 2, it is shown that the set of genes related to molecular redox functions (oxidoreductase genes) can characterize the microbial communities from different biomes better than other sets of genes, including those associated with the taxonomy. This analysis considered only genes with known function. In Chapter 3, a methodology for the recognition of the protein-coding potential of DNA sequences is proposed to discover new gene orthologies that might potentially enhance the characterization of the microbial communities by helping assigning functions to presently unknown protein encoding sequences. Alternative applications of this development are discussed in Chapter 4.

# CHAPTER 2. REDOX TRAITS CHARACTERIZE THE ORGANIZATION OF GLOBAL MICROBIAL COMMUNITIES

This chapter corresponds to a paper published in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Ramírez-Flandes, S., González, B., & Ulloa, O. (2019). Redox traits characterize the organization of global microbial communities. Proceedings of the National Academy of Sciences, 116(9), 3630-3635.

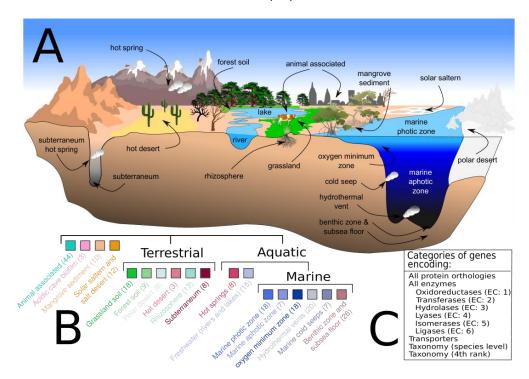
https://doi.org/10.1073/pnas.1817554116

#### **MANUSCRIPT TEXT**

#### **ABSTRACT**

The structure of biological communities is conventionally described as profiles of taxonomic units, whose ecological functions are assumed to be known or, at least, predictable. In environmental microbiology, however, the functions of a majority of microorganisms are unknown and expected to be highly dynamic and collectively redundant, obscuring the link between taxonomic structure and ecosystem functioning. Although genetic trait-based approaches at the community level might overcome this problem, no obvious choice of gene categories can be identified as appropriate descriptive units in a general ecological context. We used 247 microbial metagenomes from 18 biomes to determine which set of genes better characterize the differences among biomes at the global scale. We show that profiles of oxidoreductase genes support the highest biome differentiation when compared with profiles of other categories of enzymes, general protein-coding genes, transporter genes, and taxonomic gene markers. Based on oxidoreductases' description of microbial communities, the role of energetics in differentiation and particular ecosystem function of different biomes become readily apparent. We also show that taxonomic diversity is decoupled from functional diversity, e.g., grasslands and rhizospheres were the most diverse biomes in oxidoreductases but not in taxonomy. Considering that microbes underpin biogeochemical processes and nutrient recycling through oxidoreductases, this functional diversity should be relevant for a better understanding of the stability and conservation of biomes. Consequently, this approach might help to quantify the impact of environmental stressors on microbial ecosystems in the context of the global-scale biome crisis that our planet currently faces.

#### SIGNIFICANCE STATEMENT


Biological communities are conventionally described as assemblages of species, whose ecological roles are known or predictable from their observable morphology. In microbial

ecology, such taxonomic approach is hindered by limited capacity to discriminate among different microbes, which bear highly dynamic genomes and establish complex associations. Approaches based on culture-independent functional genes profiling might overcome these problems, but a set of usable established genes in a general situation is still lacking. We show that genes related to reduction-oxidation (redox) processes separate microbial communities into their corresponding biomes. This redox-based characterization is linked to the microbial energetics of ecosystems and to most biogeochemical cycles, and might be useful for assessing the impact of environmental degradation on the ecosystem services, underpinned by microorganisms.

#### Introduction

Biological communities are conventionally described as assemblages of species whose ecological roles are known or predictable from their observable morphological characteristics. In the early twentieth century, Lotka and Volterra pioneered the development of theoretical ecology using species numbers as the master variable in differential equations that describe the interactions and complexity of ecological systems (1). Since then, most theoretical ecologists have used species numbers as the ecological unit for developing an extensive body of theory, which includes elaborate mathematical models to explain the dynamics of populations and communities (1). In practice, this approach requires the categorization of every observed individual into a taxonomic unit —which is not a trivial task in some cases (2), and it is definitively a problem in microbial ecology (3-5). In the latter context, microbial ecologists face three main problems. First, observable morphological attributes do not provide sufficient discriminatory or functional characterization. Second, the isolation of microbial species to assess their physiology and ecological function is rarely possible, a phenomenon that is related to the so-called Great Plate Count Anomaly (6). Third, prokaryotic genomes are highly dynamic, mainly due to pervasive horizontal gene transfers and the effect of mobile DNA elements and phages (7). Microbial ecologists have employed molecular taxonomic markers, primarily the small subunit ribosomal RNA gene (SSU rRNA gene), to address the first and second problems, thereby operationally defining species and estimating their abundances and taxonomic diversity (8). This taxonomic approach has been used to explain and predict the microbial dynamics in diverse environments (9, 10). In such a context, the Earth Microbiome Project initiative has recently reported microbial taxonomic diversity per biome on a global scale, with the use of standardized protocols to provide an organized and complete catalog of microbes (11). However, several studies have reported inconsistent taxonomical correlations under apparently similar ecological scenarios, finding better consistency only when using multiple protein-coding genes as traits and when the whole community is analyzed as the ecological unit (12-16). This has been done in an attempt to address the third abovementioned problem. After all, it is the function, not the taxonomic information, which has the actual ecological relevance

(17). Unfortunately, the selection of the ecologically relevant categories of protein-coding genes for use is not evident in the broad context of planetary biomes (6, 18, 19). We analyzed 247 metagenomes from 18 biomes (Fig. 1) to tackle this issue and to determine under which specific nonexclusive set of genes the differences between biomes are the highest. These gene sets included protein-coding genes with associated orthology in the KEGG database (a typical approach in trait-based analyses), enzyme-coding genes, transporter-associated genes, and taxonomic marker genes (Fig. 1). We found that the set of genes that were encoding enzymes better differentiated the biomes than the other gene categories. In particular, the profiles of genes that were encoding oxidoreductases composed the set with the highest cohesion and separation of biome groups, suggesting that they can better describe the association of the microbial communities to their respective biomes. In addition, we found no correspondence in biome maximum diversity between the functional and the taxonomic approaches. An oxidoreductase-based description of microbial communities also serves as a convenient proxy for an energetic description of ecosystems as these proteins are responsible for redox reactions, which are the processes by which every living organism uses energy from and modify the chemical characteristics of the environment (20).



**Figure 1. Biomes and categories of genes. A)** Sketch of the biomes from which metagenomes (as proxies for microbial communities) were included in this study. The animal-associated biome included metagenomes from terrestrial animals only. A complete list and origin of these metagenomes can be found in the SI Appendix, Table S1. **B)** Organized list of the biomes illustrated in A. The number of metagenomes per biome is shown in parenthesis beside the biome name, which is displayed in the color code utilized in the rest of the figures. **C)** Categories of gene profiles considered in the analyses. All protein orthologies refer to the protein orthologies present in the KEGG

protein database. The 4<sup>th</sup> rank taxonomy typically corresponds to a phylum in the prokaryotic taxonomy (see SI Appendix for details).

### **RESULTS AND DISCUSSION**

From an ecological point of view, the functions of communities represent the most relevant information about an ecosystem. In microbial ecology, when these functions are fine-grained to molecular processes through functional genes, it is natural to ask whether all of them have the same ecological relevance to differentiate one biome from another (Fig. 1).

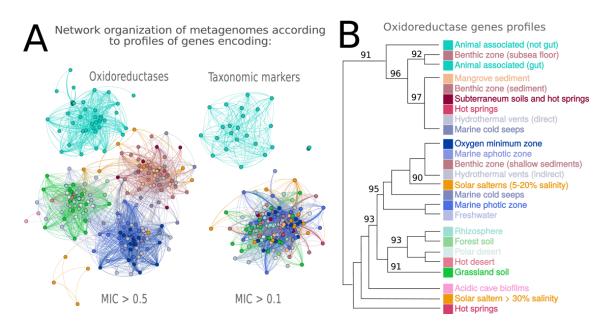



Figure 2. Association of microbial metagenomes and biomes. A) Network representation of the microbial metagenomes by profiles of oxidoreductase and taxonomic gene ranks. Nodes correspond to metagenomes, colored according to their biome of origin (Fig. 1). Edges represent maximal information coefficients (MIC). In the network associated with oxidoreductases (left), all MIC  $\geq$  0.5 are shown. The network associated with taxonomic profiles (right) was drawn with all MIC  $\geq$  0.1, as in this case, these values were significantly lower. These taxonomic edge weights were increased by 0.4 to give visual balance to the plot. The differential clustering of biomes (colors) is explained by the values of cohesion and separation from Table 1 (see also SI Appendix Figures S3 and S4). B) A simplified version (topology-only and grouped per biomes) of the hierarchical clustering of the metagenomes based on oxidoreductase gene profiles (SI Appendix, Fig. S1). Support values higher than 90% are shown in the plot.

Our results showed that redox functions support the highest statistical differentiation amongst biomes when taxonomic and functional sets of genes were compared (Table 1, SI Appendix Table S2, and Fig. S5). The discriminatory power of oxidoreductase genes for grouping biomes can be visualized in networks of correlations using different gene categories, with metagenomes as nodes (microbial communities, colored according to biome origin) and correlations as edges (Fig. 2A, SI Appendix Figs. S3 and S4). Metagenomes from different

biomes were more separated in the networks of oxidoreductases than in the network of taxonomic markers, which is the visual expression of the better cohesion and separation results, as shown in Table 1. Hierarchical clusterings of these profiles (Fig. 2B, SI Appendix Figs. S1, S2) revealed the following three main groups of biomes: a group of apparent anoxic or suboxic biomes (animal-associated, some hot springs, subterranean ecosystems, marine sediments, sub-seafloor and mangrove sediments), a group of aquatic biomes (freshwater and different types of marine ecosystems), and a group of soil-associated biomes (grassland, forest, deserts, and rhizosphere). Note that environments associated with oxygen minimum zones did not cluster with the first abovementioned group. The oxygen-limited condition shared by these ecosystems is not reflected in this clustering because the microorganisms in the pelagic low-oxygen environments mainly exploit chemolitoautotrophic metabolisms, instead of the anaerobic degradation of organic matter that normally occurs in, for example, anoxic sediments. This analysis also showed that metagenomes from extreme ecosystems, such as acidic cave biofilms, some hot spring systems, and hypersaline environments, cluster outside of these three main groups.

The group of biomes with apparent anoxic conditions shared distinctive oxidoreductase genes related to methanogenesis, sulfide oxidation, denitrification, hydrogen oxidation, nitrogen fixation and aromatic aldehydes oxidation (Fig. 3). The animal-associated metagenomes analyzed here were highly diverse, but most of them were related to the digestive systems of animals, making this group slightly biased toward the functional genes that are represented more in these microbial communities. Thus, the functions associated with these diverse biomes should be interpreted with care, as it is unlikely that, for example, the human tongue dorsum supports microbial communities exploiting hydrogen oxidation processes. Indeed, hierarchical clusterings separated the microbial communities associated with the parts at the end of the digestive system of animals (cecum, gut, and stool) from other animal-associated metagenomes (human oral mucosa, tongue dorsum, supragingival plaque, anterior nares, and posterior fornix; SI Appendix Fig. S2). Although the latter subgroup of microbial communities can also be associated with potentially anoxic microhabitats, the former subgroup was found to be functionally closer to the communities from the marine sediments and subsea-floor ecosystems, mainly because of the shared redox functionalities for the degradation of organic matter under anoxic conditions. Notably, gut-associated microbiomes displayed nitrogen fixation capabilities too (Fig. 3), which is consistent with the recent observations (21).

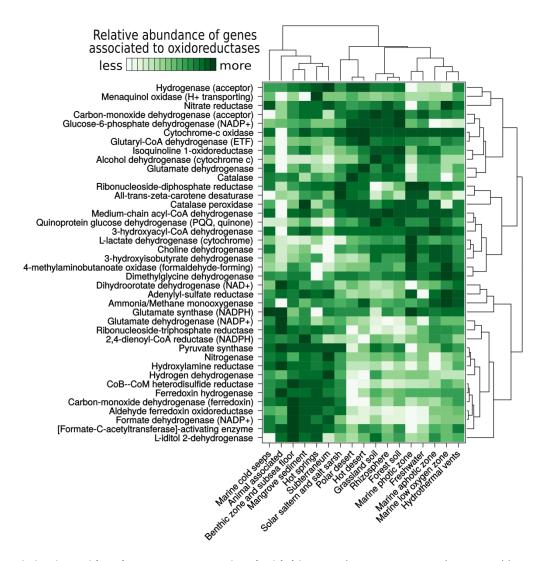



Figure 3. Distinctive oxidoreductase genes associated with biomes. These genes were determined by statistically testing that the average of ranks of each oxidoreductase gene within each biome was significantly different from the average rank in other biomes. Dark and light shades in this figure refer to relative abundances, high and low, respectively. Thus, the ranks for this figure were reversed, as a low rank indicates high relative abundance. These values were scaled for better visualization, which means that the color shades can only be compared horizontally. Some of these distinctive genes encode oxidoreductases associated with important biogeochemical and biochemical processes. For example, CoB-CoM heterodisulfide reductase (methanogenesis), Sulfide:quinone reductase (sulfide oxidation), nitrite reductase NADH (denitrification), hydrogenase (hydrogen oxidation), nitrogenase (nitrogen fixation) and aldehyde ferredoxin oxidoreductase (aromatic aldehydes oxidation). Hierarchical clusterings using these values were calculated for convenient grouping of both biomes and oxidoreductase genes.

Marine microbial communities were best characterized by a group of oxidoreductases that includes dimethylglycine dehydrogenase, sarcosine oxidase, and choline dehydrogenase (Fig. 3). These enzymes are involved in the synthesis and degradation of glycine betaine, which is an effective and widely used compatible solute for coping with saline stress (22). Indeed, most algae and some invertebrates produce and accumulate glycine-betaine as an intracellular

osmolyte (22). Thus, marine microorganisms might take advantage of the availability of this substrate in seawater and can convert it to formate, which can then be used as an energy source or directed to one-carbon metabolism for biosynthesis (23). A direct precursor of glycine-betaine is choline, which is also abundant in seawater, as it can represent up to 0.39% of the dry weight of algae (24). A distinctive oxidoreductase gene present in marine microbial communities was 3-hydroxyisobutyrate dehydrogenase, which has been found to play a role in amino acid catabolism (25), as a source of alternative substrates for respiration under metabolic stress situations. Another representative of oxidoreductase encoded in the metagenomes of these microbial communities is aldehyde dehydrogenase NAD+. Polyunsaturated aldehydes are commonly produced by diatoms as a chemical defense against grazers, and their concentrations in seawater can potentially affect the bacterial community structure and diversity (26).

Microbial communities associated with soil were mainly characterized by oxidoreductase genes related to the degradation of aromatic compounds for the carbon source [alcohol dehydrogenase cytochrome c, isoquinoline 1-oxidoreductase, catechol 2,3-dioxygenase, homogentisate 1,2-dioxygenase (27) and phenylacetyl-CoA 1,2 epoxidase (28) (Fig. 3)]. This representation might be explained by the fact that most primary production in soils is returned to the environment as detritus (29), which can be rich in aromatics as they constitute a significant part of lignin in higher plants (27). Genes encoding betaine-aldehyde dehydrogenase were also distinctive in soil-associated microbial communities. This enzyme is involved in the biosynthesis of glycine-betaine as a compatible solute for alkaline-saline stress (30). In fact, reports indicate that many soil environments are highly alkaline, and transient conditions, such as drought, can significantly increase the alkalinity within cells (31). Additionally, plant root exudates can change the soil chemistry, sometimes creating microhabitats of increased alkalinity (30). Thus, soil microbial communities seem to be genetically prepared to resist salinealkaline stress by synthesizing their cellular defenses, unlike marine microbial communities that apparently rely more on the environmental availability of glycine-betaine, or its direct precursors, such as choline or sarcosine. Despite freshwater biome grouping with the marine biomes, its associated microbial communities still share similarities in the abundances of some oxidoreductase genes with the soil biomes, such as in the case of betaine-aldehyde dehydrogenase, carbon monoxide dehydrogenase (acceptor) and stearoyl-CoA 9-desaturase (Fig. 3). This observation might be related to the results of a recent study that suggest that freshwater ecosystems might connect the otherwise separated microbial communities (32).

Although most biogeochemical processes are widely distributed across different environments (33), some oxidoreductase genes associated with these processes appear to be unimportant for soil and aquatic biomes. This apparent conflict can be explained by the fact that, frequently, the most abundant microbes in these environments are heterotrophs [e.g., members of

Acidobacteria in soils (34) and SAR11 clade in the ocean (35)]. Thus, although nitrification, denitrification, sulfur oxidation and carbon fixation also occur in terrestrial and aquatic ecosystems, their genetic markers are significantly less abundant than the oxidoreductase genes related to heterotrophic metabolisms (SI Appendix, Table S4). On the other hand, the biomes from the apparently anoxic group (typically harboring fewer heterotrophs) appeared prominently in many of these processes such as, for example, methanogenesis, hydrogen oxidation, nitrogen fixation, sulfur-oxidation, nitrification, and denitrification (Fig. 4). In addition, the oxidative phosphorylation process under suboxic conditions (associated with Cbb3 oxidase, encoded by the ccoN gene, Fig. 4) appeared to be best ranked in these biomes. Despite the pelagic low-oxygen marine biome was not clustered in this group of biomes (Figs. 2B and 3 and SI Appendix, Figs. S1 and S2), their metagenomes displayed high genetic representation associated with some of these processes, such as nitrification, denitrification, and sulfuroxidation (Fig. 4). This fact has been described as the beginning of a progressive rerouting of the energy flow into the microbial pathways as oxygen declines in marine ecosystems, in detriment of the higher trophic levels (36-38). Such progression ends in the extreme situation in which all benthic energy is processed as hydrogen sulfide (36), with concomitant accumulation of nitrite in the intermediate case of the anoxic marine zones (39). Low oxygen areas in the ocean have rapidly expanded in the past decades, and they are expected to further increase as a consequence of global warming (36, 38). This, in turn, can be affected by the greenhouse gases that are emitted in marine low-oxygen zones as a by-product of anaerobic microbial pathways (36, 38, 39).

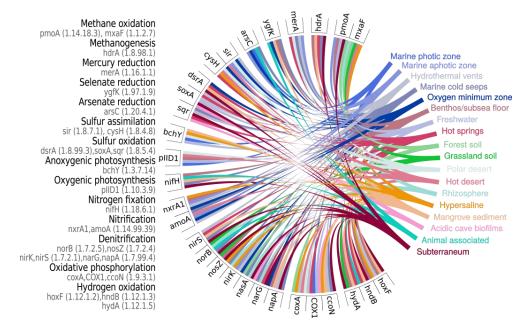
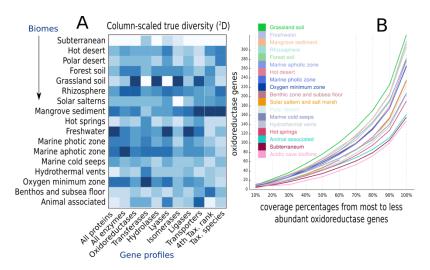




Figure 4. Biogeochemically relevant processes per biome by oxidoreductase genes relative abundances. Oxidoreductase genes associated with biogeochemical processes and their top five biomes where they were ranked the highest. The biomes per genes are in clockwise order, starting from the biome where the gene was best

ranked. For example, the dissimilatory sulfite reductase gene (*dsrA*; involved in sulfur oxidation and reduction) was found best ranked in the following biomes in this order: hydrothermal vents, subterranean habitats, mangrove sediments, hot springs, and oxygen minimum zones.

The extraordinary dispersal potential of microbes is usually expressed through the old tenet "everything is everywhere, but the environment selects," which a recent study extends to "every gene is everywhere, but the environment selects" (32). This fact suggests that measures of diversity for conducting large-scale studies of biomes in microbial ecology should include not only richness but also the evenness of the distribution of gene categories. By using the inverse Simpson index, we found that microbial taxonomic diversity does not correlate with microbial functional diversity. In our analysis, microbial communities from mangrove sediments were found to be the most taxonomically diverse (Fig. 5A). This result is consistent with findings of the recent studies that show that some sediment environments can be more diverse than soils (40), which, in turn, have been traditionally considered to be the ecosystems with the highest microbial diversity (41). However, regarding oxidoreductase genes, grassland soils and rhizospheres were found to be the most diverse biomes (Fig. 5A). This finding correlates with observations in plant diversity that suggest that, in the fine grain, grasslands are the most diverse soil biomes, harboring up to ~90 different plant species per square meter (42). It is noteworthy that the temperate grasslands are currently among the biomes that face the highest ecological risk due to the extensive habitat loss and under-protection (43). To give a quantitative example of the microbial diversity of oxidoreductase genes in grasslands, consider that, on average, ~130 of their most abundant categories were needed to cover the 70% of the total abundance of these genes. The same coverage percentage needed only ~40 of the most abundant categories in the subterranean and acidic cave biofilms biomes (Fig. 5B).



**Figure 5. Microbial diversity of biomes. A)** Heatmap plot constructed with the inverse Simpson diversity index (true-diversity with q=2) of the taxonomic and functional profiles for the metagenomes, averaged per biome. Dark color shades indicate high diversity. These average values were scaled per profile category for homogenous

contrast. Thus the colors can only be compared along columns, i.e., by biome. For example, regarding oxidoreductase genes, the grassland biome is the most diverse and rhizosphere is the second one. On the other hand, the subterranean biome is shown as the less diverse biome in almost every gene category. Note that "All proteins" refer to all proteins with defined orthology in the KEGG database (see SI Appendix for details) **B)** Average number, per biome, of oxidoreductase genes (vertical axis) necessary to cover different percentages of total oxidoreductase genes, counted from the most to less abundant. For example, the 60 most abundant oxidoreductase genes in grassland-associated datasets in average covered ca. 45% of the total pool of oxidoreductase genes.

The choice of relevant variables is a critical step in the analysis of any complex system. In microbial ecology, the taxonomic structure of communities has typically been considered a proxy for the microbial ecosystem's functioning, even though it is often unable to resolve functional genetic traits (44). The need for alternative trait-based approaches has been claimed for years (45), but there has been no agreement on the selection of a relevant set of genes necessary for its practical application (6, 18, 19). In this paper, we evaluated different sets of genes for this purpose, finding that oxidoreductase genes are a convenient choice. The set of transporter genes also has this potential, but its power to differentiate biomes was found to be lower. This is most likely as these genes also suffer from significant redundancy (e.g., there are different transporters for the same substrate, depending on their affinities). Other groups of enzyme genes, such as those associated with hydrolases, also supported a proper separation of biomes (Table 1, SI Appendix, Fig. S4); however, they are slightly related to biogeochemical processes, mainly through the carbon cycle. In contrast, oxidoreductases are directly involved in most biogeochemical processes and nutrient recycling in every environment. Thus, the diversity of these functions should be relevant to better understand the stability and conservation of biomes, affected by the high disparities between ecosystem conversion and conservation across biomes, which has been recognized as comprising an ongoing biome crisis (43). Indeed, conservation efforts have mainly focused on particular species or local macro-communities (e.g., polar bears and coral reefs, respectively), but not on the microbial ecological functions that sustain trophic levels, biogeochemical cycles and the ecosystem services that are derived from them. This omission is likely due to the difficulty of predicting microbial ecosystem dysfunction from environmental stressors using microbial taxonomy information (46). We expect that an oxidoreductase-based description of microbial communities should facilitate this task, and help to quantify in future developments the impact of environmental changes on microbial ecosystem functions in the context of the global-scale biome crisis that our planet currently faces.

#### MATERIALS AND METHODS

Data collection and sequence analysis: The metagenomic datasets were collected from metagenomic studies of diverse microbial communities in recent years. The selection of

metagenomes was guided by literature search, trying to cover the biomes with at least three "Whole Genome Amplified" metagenomes sequenced with 454 or Illumina technologies. This process resulted in 247 metagenomes, grouped in 18 biomes (Fig. 1). The sources of these datasets are listed in the SI Appendix, Table S1. The sequences of these datasets were aligned against different protein sequence databases (SI Appendix, Figure S6) using the BLASTX algorithm of the DIAMOND software, with a bit-score cutoff of 50. With these alignment results, the different profiles listed in Figure 1 and Table 1 were constructed. Group variances analyses: The PERMANOVA statistical test was used to assess and compare the degree of separation of metagenomes (microbial communities) into biome groups by using the data profiles (Table 1) with dissimilarity matrices constructed with distances calculated based on non-parametric correlations [Maximal Information Coefficient (MIC) and Spearman]. Diversity estimation: Each profile of categories, for all the metagenomic datasets (Fig. 1), was first resampled by a coverage percentage of 95%. True diversity was calculated on the resampled datasets with using the inverse Simpson index. The diversity per biome was calculated as the average of the diversities of all metagenomic datasets from each biome (SI Appendix, Table S1). **Networks and clustering**: For each pair of profiles described above, a distance between them was calculated as 1-correlation (correlation as the pairwise maximal information coefficient between the profiles). The networks of metagenomes (Fig 2A) were constructed by writing the graph in the Graph Exchange XML format (GEXF) format and rendered using the Gephi software with the OpenOrd network layout. The hierarchical clustering of biomes was computed with the R package Pvclust with 10<sup>4</sup> permutations and, with a distance based on the Spearman correlation. The genes in Figure 3 were selected as the top three oxidoreductase genes from each biome whose average ranking was lower than the total average. More details about all these procedures can be found in the SI Appendix.

#### **ACKNOWLEDGMENTS**

This work was supported by the Millennium Science Initiative Grant IC120019 and the Chilean National Commission for Scientific and Technological Research Grant Fondecyt 1161483 (O.U.) and the Center of Applied Ecology and Sustainability [CAPES] (B.G).

## REFERENCES

- 1. Maynard-Smith J (1974) *Models in Ecology*.
- 2. Hey J (2001) The mind of the species problem. *Trends Ecol Evol* 16(7):326–329.
- 3. Cohan FM (2002) What are bacterial species? *Annu Rev Microbiol* 56:457–487.
- 4. Doolittle WF, Papke RT (2006) Genomics and the bacterial species problem. *Genome Biol* 7(9):116.
- 5. Doolittle WF, Zhaxybayeva O (2009) On the origin of prokaryotic species. *Genome Res*

- 19(5):744-756.
- 6. Boon E, et al. (2014) Interactions in the microbiome: communities of organisms and communities of genes. *FEMS Microbiol Rev* 38(1):90–118.
- 7. Darmon E, Leach DRF (2014) Bacterial genome instability. *Microbiol Mol Biol Rev* 78(1):1–39.
- 8. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. *Proc Natl Acad Sci* 87(12):4576–4579.
- 9. Fuhrman JA, et al. (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. *Proc Natl Acad Sci U S A* 103(35):13104–9.
- 10. Faust K, Raes J (2012) Microbial interactions: from networks to models. *Nat Rev Microbiol* 10(8):538–550.
- 11. Thompson LR, et al. (2017) A communal catalogue reveals Earth's multiscale microbial diversity. *Nature* 551(7681):457–463.
- 12. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. *Proc Natl Acad Sci USA* 108(34):14288–14293.
- 13. Nemergut DR, et al. (2016) Decreases in average bacterial community rRNA operon copy number during succession. *ISME J* 10(5):1147–1156.
- 14. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. *Science* (80-) 353(6305):1272–1277.
- 15. Bletz MC, et al. (2016) Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. *Nat Commun* 7:13699.
- 16. Dinsdale E, et al. (2008) Functional metagenomic profiling of nine biomes. *Nature* 452(7187):629–632.
- 17. Doolittle WF, Booth A (2017) It's the song, not the singer: an exploration of holobiosis and evolutionary theory. *Biol Philos* 32(1):5–24.
- 18. Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. *Science* 320(5879):1039–1043.
- 19. Nemergut DR, et al. (2013) Patterns and processes of microbial community assembly. *Microbiol Mol Biol Rev* 77(3):342–356.
- 20. Falkowski PG (2015) From light to life. *Orig Life Evol Biosph* 45(3):347–350.
- 21. Igai K, et al. (2016) Nitrogen fixation and nifH diversity in human gut microbiota. Sci

- *Rep* 6(August):1–11.
- 22. Kiene RP, Hoffman Williams LP (1998) Glycine betaine uptake, retention, and degradation by microorganisms in seawater. *Limnol Oceanogr* 43(7):1592–1603.
- 23. Eloe EA, et al. (2011) Going deeper: Metagenome of a hadopelagic microbial community. *PLoS One* 6(5):e20388.
- 24. Roulier MA, Palenik B, Morel FMM (1990) A method for the measurement of choline and hydrogen peroxide in seawater. *Mar Chem* 30(C):409–421.
- 25. Schertl P, Danne L, Braun H-P (2017) 3-Hydroxyisobutyrate dehydrogenase is involved in valine and isoleucine degradation in A. thaliana. *Plant Physiol* 175(September):pp.00649.2017.
- 26. Bartual A, et al. (2014) Polyunsaturated aldehydes from large phytoplankton of the Atlantic Ocean surface (42°N to 33°S). *Mar Drugs* 12(2):682–699.
- 27. Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. *Handbook of Hydrocarbon and Lipid Microbiology*, pp 799–837.
- 28. Teufel R, et al. (2010) Bacterial phenylalanine and phenylacetate catabolic pathway revealed. *Proc Natl Acad Sci* 107(32):14390–14395.
- 29. Moore JC, et al. (2004) Detritus, trophic dynamics and biodiversity. *Ecol Lett* 7(7):584–600.
- 30. Nie Y, Wang DQ, Zhao G, Yu S, Wang HY (2016) Effects of betaine aldehyde dehydrogenase-transgenic soybean on phosphatase activities and rhizospheric bacterial community of the saline-alkali soil. *Biomed Res Int* 2016. doi:10.1155/2016/4904087.
- 31. Vriezen JAC, De Bruijn FJ, Nüsslein K (2007) Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. *Appl Environ Microbiol* 73(11):3451–3459.
- 32. Fondi M, et al. (2016) "Every gene is everywhere but the environment selects": global geolocalization of gene sharing in environmental samples through network analysis. *Genome Biol Evol* 8(5):1388–1400.
- 33. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth's biogeochemical cycles. *Science* (80-) 320(5879):1034–1039.
- 34. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: Moving beyond genes and genomes. *Front Microbiol* 7(MAY):1–16.
- 35. Morris RM, et al. (2002) SAR11 clade dominates ocean surface bacterioplankton communities. *Nature* 420(December):806–810.
- 36. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine

- ecosystems. Science (80-) 321(5891):926-929.
- 37. Wright JJ, Konwar KM, Hallam SJ (2012) Microbial ecology of expanding oxygen minimum zones. *Nat Rev Microbiol* 10(6):381–394.
- 38. Breitburg D, et al. (2018) Declining oxygen in the global ocean and coastal waters. *Science (80-)* 359(6371). doi:10.1126/science.aam7240.
- 39. Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ (2012) Microbial oceanography of anoxic oxygen minimum zones. *Proc Natl Acad Sci U S A* 109(40):15996–6003.
- 40. Lozupone C, Knight R (2007) Global patterns in bacterial diversity. *Proc Natl Acad Sci USA* 104(27):11436–11440.
- 41. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. *Curr Opin Microbiol* 5(3):240–245.
- 42. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: The world records. *J Veg Sci* 23(4):796–802.
- 43. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: Global disparities of habitat loss and protection. *Ecol Lett* 8(1):23–29.
- 44. Krause S, et al. (2014) Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. *Front Microbiol* 5(MAY):1–10.
- 45. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. *Trends Ecol Evol* 21(4):178–185.
- 46. Webster NS, Wagner M, Negri AP (2018) Microbial conservation in the Anthropocene. *Environ Microbiol*. doi:10.1111/1462-2920.14124.

## SUPPLEMENTARY INFORMATION APPENDIX (SI APPENDIX)

Data collection. The metagenomic datasets used in this work were collected from selected metagenomic studies of diverse microbial communities in recent years. The selection of metagenomes was guided by literature trying to cover the biomes with at least three metagenomes. Only "Whole Genome Amplified" (WGA) metagenomes sequenced with Roche 454 or Illumina technologies were selected because their output data has been demonstrated to provide comparable views of the sampled communities (1). This process resulted in 247 grouped metagenomes in the 18 depicted biomes in Figure 1. The specific sources and references for these metagenomic datasets are listed in Table S1. For the datasets stored in the NCBI Sequence Read Archive (SRA), the fastq-dump program from the NCBI SRA toolkit version 2.8.2 was used (publicly available at https://github.com/ncbi/sra-tools/wiki/Downloads). For the datasets in the MG-RAST system, the application programming Interface at https://api.metagenomics.anl.gov was used with the Linux program cURL (https://curl.haxx.se).

Sequence analysis. A simplified sketch of the main procedures, described here, is illustrated in Figure S6. The collected datasets were renamed according to the third column in Table S1, and their reads were directly compared through translated sequence alignments with the sequences in a subset of the KEGG protein database (2), the TCDB Transporters database (3), and a custom database (RIBPROTSDB) that was composed of all ribosomal protein sequences from the complete and draft genomes in the NCBI GenBank website<sup>1</sup>. The KEGG protein database used in this study was a subset of the original that included both prokaryotic and eukaryotic sequences but only with an assigned KEGG orthology (hereinafter referred to as the KEGG database for simplicity). All these massive sequence alignments were carried out using the BLASTX algorithm in the DIAMOND software package (4) with the options "-sensitive" and "—max-target-seqs 25". The idea behind the latter option was to select only the "best" hit on the target database for each query sequence, and thus we could have used a value of 1 for this parameter. However, the DIAMOND documentation does not explicitly describe what "best" means in this context. Therefore, we let DIAMOND output its best 25 hits and within those we selected the best hit according to the criterion that follows. First, there are several criteria to evaluate alignments. For example, some authors use the alignment length and the sequence identity for assessing homology, whereas others use an E-value or a bit-score cutoff. Alignment filtering based on alignment length and sequence identity ignores the sequence similarity information provided by the sequence alignment analysis using substitution matrices like BLOSUM62 (default option in most BLASTX algorithm implementations, DIAMOND in

<sup>&</sup>lt;sup>1</sup> <u>ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly\_summary.txt</u> and same link changing "bacteria" for "archaea".

particular). On the other hand, a bit-score somehow encodes a measure that combines alignment length and sequence similarity into a single number. The alignment filtering based on an E-value cutoff is only appropriate when a single reference database is used because it depends on the size of the database. Thus, as we use multiple reference databases (Kegg protein sequences with KO, TCDB and a database of ribosomal protein sequences), and since we wanted to use a single criterion comparable across different reference databases, we opted to select the hit with the highest bit-score, considering a minimum cutoff value of 50. After this process, counts of categories in the reference databases were obtained for each metagenome. With the counts in the KEGG database, profiles for KEGG orthologies (KO), enzymes (EC), oxidoreductases (EC1), transferases (EC2), hydrolases (EC3), lyases (EC4), isomerases (EC5) and ligases (EC6) genes were created. The EC numbers were computed using the KO information and the "ko2ec" mapping from the KEGG distribution. With the corresponding counts in the TCDB database, profiles of transporters were constructed using the respective TCDB IDs in that database. The taxonomic profiles at the species and 4<sup>th</sup> rank level were constructed with information from the GenBank ID (GI), associated with the best BLASTX hit (whenever its corresponding bit-score was higher than or equal to 50) in the RIBPROTSDB and converted to a NCBI taxonomy ID for each sequence (using the database ftp://ftp.ncbi.nih.gov/pub/taxonomy/gi taxid prot.zip). The translation from NCBI taxonomic carried IDs to names was out using the NCBI (ftp://ftp.ncbi.nih.gov/pub/taxonomy/). An example for the 4<sup>th</sup> rank taxonomy, in the taxonomic lineage is as follows:

Bacteria; FCB group; Bacteroidetes/Chlorobi group; Bacteroidetes; Bacteroidales; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides vulgatus; Bacteroides vulgatus PC510

where, the 4<sup>th</sup> rank level taxonomy would be *Bacteroidetes*, while the species rank would be *Bacteroides vulgatus PC510*. Note that the first NCBI rank taxonomy, associated with "cellular organisms" was omitted. Generally, but not always, the 4<sup>th</sup> rank corresponds to phylum as the prokaryotic taxonomy is not always complete. Profiles for this special "taxonomy rank" were included because higher rank taxonomies in microbial ecology can achieve more coherence than the species level (5). We used ribosomal proteins to construct the taxonomic profiles because the typical taxonomic marker gene, ssu\_rRNA (16S or 18S), has normally very low representation in WGA metagenomes, resulting in reduced sample sizes, thereby potentially affecting the power of the statistical tests. The ribosomal proteins were selected because they rarely participate in horizontal gene transfers, just like the ssu\_rRNA gene.

Count profiles were then used to create two different sets of normalized profiles: ranking and variance stabilized profiles. The former set was created with a custom script while the latter set was created using the DSeq2 package (6) in the R statistical package. The DSeq2 function used was "varianceStabilizingTransformation" with the parameter fitType='local'. Normalization of

the microbiome data is necessary to allow the comparison of datasets with different sizes. Historically, the most popular normalization methods for analyzing microbiome data have been the use of ratios (dividing counts by the total number of counts per dataset) and rarefaction, both of which have known statistical problems (7). More recently, variance stabilizing methods that make use of the negative binomial distribution have gained popularity in these analyses. However, these methods convert the natural count numbers into artificial real numbers that are sometimes difficult to interpret in downstream analyses (because, for example, the order of the relative abundances of the elements is lost within a dataset). On the other hand, ranking analysis provides easy-to-interpret data while at the same time is useful in reducing the complexity of heterogeneous data by weakening the order (without losing it) of raw numbers coming from sources with possible noise. For these reasons, ranking profiles were preferably used in most subsequent analyses, unless otherwise stated.

Group variances analyses. Permutational multivariate analysis of variance (PERMANOVA) analyses (Adonis2 implementation from the "vegan" R package, with default number of permutations = 999) were used to test whether the predetermined grouping (biomes) of metagenomes (microbial communities) were determined by the different similarity (correlation) matrices created as described below for the different set of genes (Table 1, Table S2 and Figure S5). For the analysis shown in Table 1, the variance-stabilized counts were used because the ranking gives more weight to the differences among the rarest features, as the rarer a feature is, the higher is its rank number (rankings start from the most abundant with number 1) and thus, its variability. This artificial high variation might affect the MIC (maximal information coefficient) correlation of profiles (more details about correlations is in the section "Correlations, distances, networks, heatmaps and hierarchical clustering" below). To test this effect, we used ranking profiles over different coverage percentages (covering from most to less abundant) of the metagenomes to verify that with lower coverage percentages (i.e., more of the rare elements ignored) the higher was the F-statistic of the PERMANOVA differentiating the biome groups, and the oxidoreductases progressively and consistently dominated this differentiation at 70%, 60% and 50% (Table S2). These results suggested that the rankings of the "long tail" of rare genes (in each category) were affecting the correlations, justifying the use of variance-stabilized counts in this particular analysis by reducing the high variability of the ranks with large numbers (rare elements) (Table 1). However, the results in Table 1 were still not clear as many enzyme categories had rather similar values for the F-statistic. To unambiguously determine which set of enzyme genes produce the highest separation of metagenomes into biome groups, a third PERMANOVA analysis was performed. This time the analysis included bootstrapping (to provide statistical significance of differences among the resulting F-statistic values) and removal of variables or methods from the previous PERMANOVA analyses that might potentially affect the comparison such as different profile sizes (last column in Table 1), different dataset sizes (metagenomes sequenced at different

depths), the use of normalization methods (such as ratios or ranking-based methods) and the use of a reference database (Kegg protein sequences with assigned orthology) that might potentially include bad annotated sequences. To this end, all metagenomes were re-analyzed with mi-faser (9) against the GS+ database of sequences from experimentally verified enzymatic functionality (included in the mi-faser software distribution). This database currently has a limited number of sequences to be used as a reference database in general metagenomic studies (the version used here has only 2865 sequences), but that is not a problem for this particular analysis (unlike other analyses in this study, aimed at characterizing the microbial communities qualitatively with reasonable completeness). The output of this process was a set of profiles of counts for the different enzymes [counted with the reads associated with the genes sharing the same Enzyme Commission (EC) number] for each metagenome. With these data, there are two ways in which a bootstrapping analysis can be done. The first is to resample (with replacement) a fixed number of enzymes from these profiles (for each category), and the other is to pre-select a fixed number of enzymes (for each category) and to resample the sequences of each metagenome until a fixed number of counts on these pre-selected enzymes is reached. The second alternative was chosen to achieve homogeneity of the total counts among all resamples, making the particular counts directly comparable. With this method, the use of rankings or variance stabilization methods was avoided, although this method can be seen as a type of normalization by rarefaction on the pre-selected set of enzymes for each category. The size of the sets of the pre-selected enzymes for this analysis was set to 50 (roughly, half of the smaller profile size in Table 1). For each enzyme category, the set of these 50 enzymes were selected from the most abundant ones in the metagenomes across all of the biomes as follows:

- 1. For each biome, the enzyme ranks of the associated metagenomes were averaged, resulting in profiles of average ranks of enzymes per biome.
- 2. The top enzyme from its corresponding profile (without replacement) until reaching a set of 50 enzymes was selected, one at a time per biome.

Having established these sets of 50 representative enzymes (one set for each enzyme category, Table S3), all metagenomic datasets were resampled 100 times by randomly selecting sequences until these 50 enzymes reached a total count of 1000. With these 100 resamples for each enzyme category, PERMANOVA analyses for group differences were carried out, and the results are shown in Figure S3. ANOVA analysis of the F-values for each resample showed a strong difference of these values among the different categories (p-value  $< 10^{-16}$ ). A post-hoc analysis of these differences was done with the "pairwise t-test," correcting p-values with the Bonferroni method in the R-statistical software, resulting in a significant difference between every pair of groups (all p-values  $< 10^{-16}$ , except for the Lyases vs. Ligases whose p-value was  $< 10^{-14}$ ).

Cohesion and separation of clusters. To further quantify how the original biome of the sample might be determined by different metagenomic profiles of gene counts, the cohesion and separation of groups (biomes) that resulted from the different sets (profiles) of genes was analyzed. An optimal characterization of any grouping or clustering seeks high cohesion within groups and high separation between groups. An intuitive measure of cohesion is the average of the pairwise correlations of the elements within groups, which in this case correspond to correlations of profiles for each metagenome within particular biomes (see below for details about the type of correlation employed). Maximization of this average was followed to accomplish high cohesion. On the other hand, the separation between groups was estimated with the average of pairwise correlations of profiles for each metagenome to every other metagenome outside the same biome. Minimization of this average was followed to separate the groups (low correlation to outer elements, so separation will be the negative value of this average). Thus, a natural function to optimize both cohesion and separation is simply the sum of both values.

Correlations, distances, networks, heatmaps and hierarchical clustering. For each pair of profiles of rankings from all metagenomes, a measure of correlation between them was calculated using the maximal information coefficient, MIC/MINE (10). Given the high-volume of data, the RapidMIC implementation of this algorithm was used (11), which is a multithreaded version of MINE written in C++. With these correlations, a distance between every pair of metagenomes (X and Y) was calculated as 1-abs(correlation(X,Y)). The networks of metagenomes were constructed by writing a graph description in the GEXF format with the correlations for each metagenome to other metagenomes (MIC correlation ≥ 0.7 in the case of the network associated with oxidoreductases, and ≥ 0.1 for the network associated with taxonomic profiles). The GEXF files were then graphically rendered by using the Gephi software with default parameters (12). The "OpenOrd" layout algorithm (with default parameters) was used for these graphs because it can make use of edge weights but mainly because it is aimed at better distinguish clusters. The hierarchical clustering of metagenomes was computed with the R package pyclust (13) with 10000 permutations to give the branches statistical significance. Here, a similar distance, as described above, was used but with the Spearman correlation because the computation of the MIC is a time-consuming process for large data. The use of this distance allowed 10000 bootstrap permutations to be carried out in a reasonable time period. The heatmap of Figure 3 was created with the "levelplot" function from the package "lattice" in the R statistical software. A typical method to determine the distinctive elements in groups of data (distinctive oxidoreductases per biome in this case) is SIMPER (14), which determines the elements that contribute more to the dissimilarity of the groups by using the Bray-Curtis measure of similarity. The use of this method (SIMPER) was avoided mainly because it has been recently demonstrated that this method can potentially lead to wrong conclusions (15). Thus, the distinctive oxidoreductase genes per biome were obtained as follows: for each biome,

statistical hypothesis tests were conducted for each oxidoreductase gene under the assumption that its average ranking was equal to the corresponding average in all the other biomes, keeping only the oxidoreductase genes (for each biome) that rejected that null hypothesis with a p-value < 0.05. The top three (by the lowest ranking within each biome group, as lower ranking means higher abundance) oxidoreductase genes from the whole set of them were considered. If we have two p-values for two different t-tests (two elements being tested for their "distinctiveness" in a biome), for example, p-value1 = 0.003 (with avg. rank = 100) and pvalue2 = 0.005 (with avg. rank = 50), as both p-values were under the cutoff of 0.05, we selected the second element (despite its higher p-value) because it had a lower average rank (again, the lower the rank, the higher its relative abundance). Many oxidoreductase genes selected in this way were shared among many related biomes, but the unique set of them was considered, resulting in the oxidoreductase names displayed in Figure 3. To statistically assess these averages differences the t-student test in R was used for simplicity and coherence with other analyses in this work. Even when these data are not necessarily normal, the robustness of the t-test under non-normal, large data has been previously demonstrated (16). Nonetheless, this analysis was also carried out using the Mann-Whiney-Wilcoxon test, and the results were practically the same, with less than 5% of the distinctive elements having differences. Therefore, the results of the analysis with the t-test were used.

**Diversity estimation**. Each profile of categories for all the metagenomic datasets was resampled, using the Turing-Chao improved coverage estimator, by a coverage of 95% to standardize samples by completeness rather than fixed sizes (17, 18). Subsequently, true diversity (effective numbers of types) was calculated with the parameter q = 2 (19). This measure of diversity is also called the inverse Simpson index, and it has the characteristic of giving more weighing to the most abundant types (more than the Shannon index, and much more than a raw richness index). This index was also selected because it is the least affected index by heterogeneous sample sizes and inventory completeness (20). The diversity of biomes was calculated as the average of diversities of all metagenomic datasets from each biome (Table S1). The heatmap in Figure 5 was created using the "levelplot" function from the package "lattice" in R with input data from the above described averages. The curves of coverage of oxidoreductase and taxonomic marker genes in Figure 4B and 4C were obtained as follows: first, all datasets (metagenomes) were resampled at 95% of coverage as described above. Afterwards, a simple coverage diversity estimator was defined as the number of categories (oxidoreductase or taxonomy-associated genes) that were present at a given percent coverage for each of these new 100% resamples. With these data, an estimator for percent values of 10%, 20%, 30%... 100% was calculated for each metagenome. An average per biome was calculated using the values that have just been described. With these average values, a Scalable Vector Graphics representation was written using a custom script program. The use of typical rarefaction analyses was avoided because it has been demonstrated that these analyses

are not appropriate when the size of samples significantly varies among datasets (7, 17), which is the case in this study due to the consideration of very heterogeneous datasets of metagenomes obtained with different sequencing techniques, different sequencing depths, different times, etc. Note that the taxonomic diversities assessed here can be underestimated because only ribosomal proteins from sequenced genomes were used for this determination instead of the more common 16S gene (the taxonomic coverage of ribosomal proteins from sequenced genomes is lower than the taxonomic coverage of 16S genes). Thus, this taxonomic diversity estimation should be considered for comparative purposes only, which was the objective of this analysis, but not as absolute taxonomic diversities.

### **FIGURES**

The figures of this supplementary material are presented in the following pages.

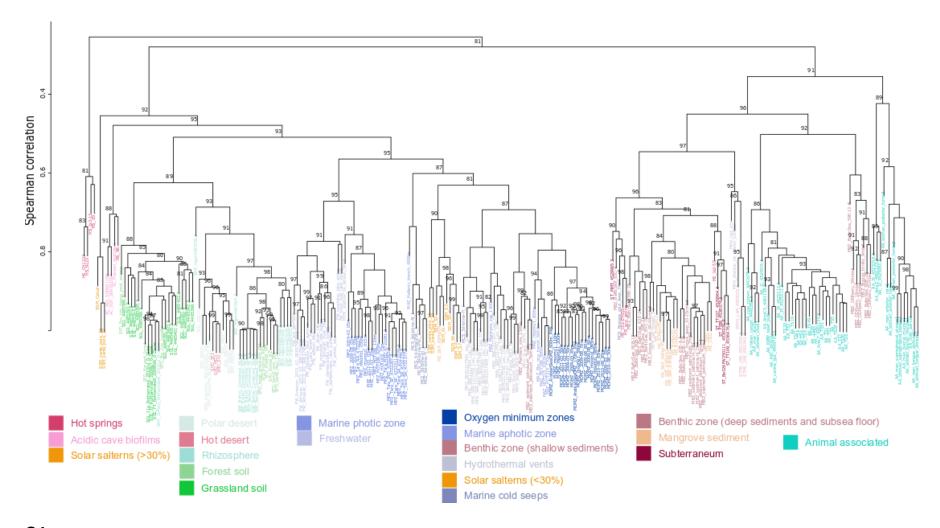
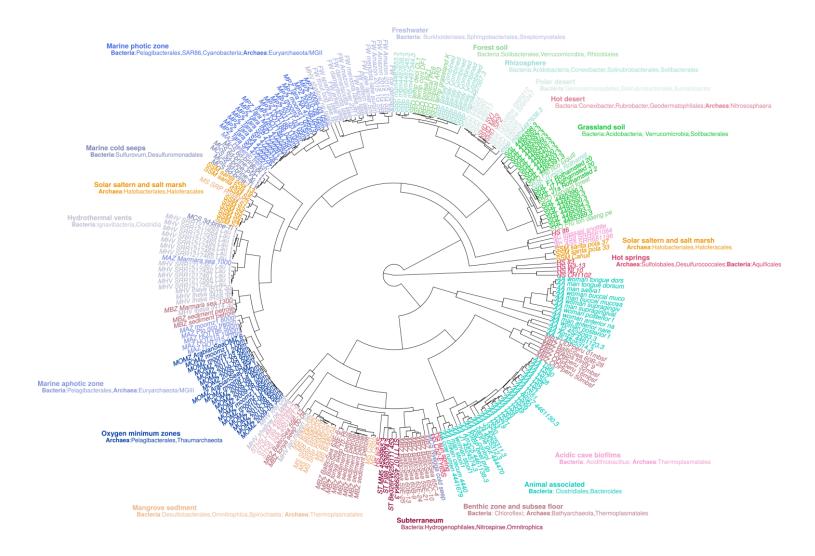
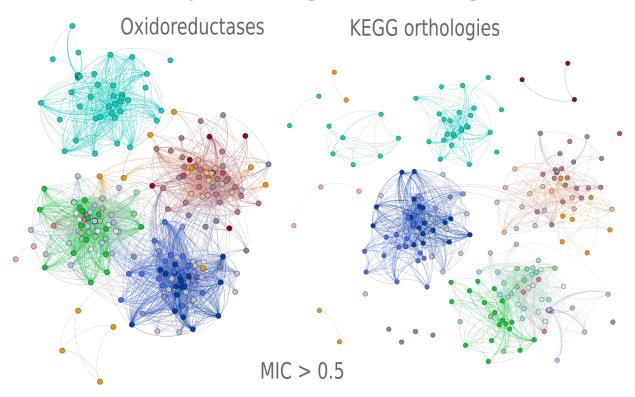



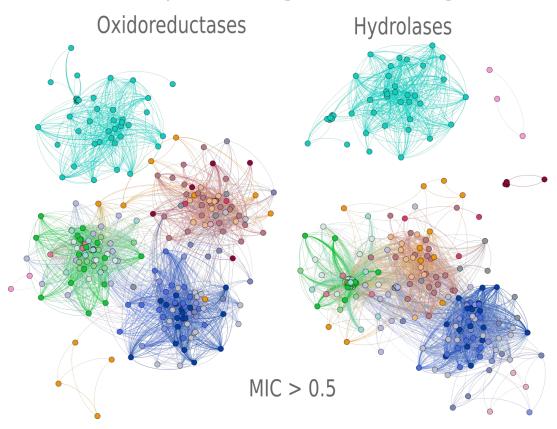

Figure S1


Hierarchical clustering of metagenomes based on profiles of genes encoding oxidoreductases. The distance metric used for this clustering was 1-correlation (Spearman), and support values were obtained with the pyclust R package with 10<sup>4</sup> permutations.



# Figure S2

Hierarchical clustering of metagenomes based on profiles of genes encoding oxidoreductases. This plot is the circular version of Figure S1 with an alternative visualization. The colors indicate the biomes from which each metagenome was sampled. The origin of these metagenomes can be found in Table S1. Some representative taxa were included here for each biome (another representation of taxa per biome can be found in Figure S7).


# Network organization of metagenomes according to profiles of genes encoding:



# Figure S3

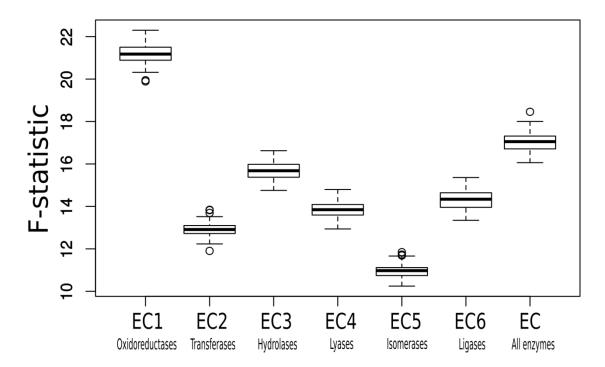
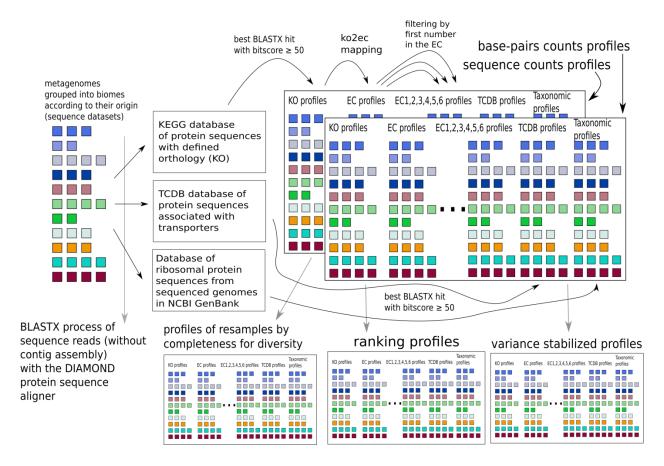
Network representation of the microbial metagenomes used in this study by oxidoreductase and "all KEGG orthologies" profiles of gene ranks. Nodes represent metagenomes colored according to the biome of origin (Fig. 1). Edges represent MIC correlations higher than 0.5 in both cases. Networks were rendered in the Gephi software with the OpenOrd layout algorithm, which it is aimed at better distinguish clusters. Note how the network associated with KEGG orthologies (right) has better separation than the network associated with oxidoreductases (left). However, the latter is superior in the cohesion of the clusters. These effects are the reflection of the numbers in Table 1 (third and fourth columns).

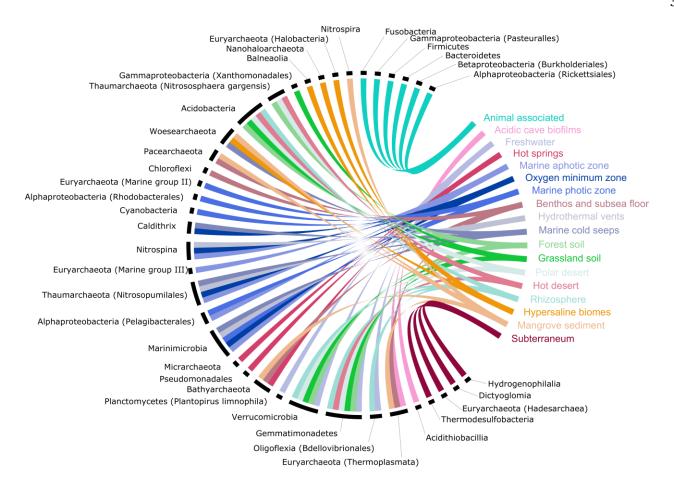
# Network organization of metagenomes according to profiles of genes encoding:



# Figure S4

Network representation of the microbial metagenomes used in this study by oxidoreductase and hydrolase profiles of gene ranks. Profiles of hydrolases achieved the second best F-statistic in the PERMANOVA analysis whose results are shown in Table 1. As in Figures 2 and S3, nodes represent metagenomes colored according to the biome of origin (Fig. 1). Edges represent MIC correlations higher than 0.5 in both cases. Networks were rendered in the Gephi software with the OpenOrd layout algorithm, which it is aimed at better distinguish clusters. Note how the network associated with hydrolases (right) has a slightly better cohesion than the network associated with oxidoreductases (left). However, the network of oxidoreductase genes profiles is better separating the different clusters. These effects are the reflection of the numbers in Table 1 (third and fourth columns).



Figure S5

Boxplot with the values of F-statistic from PERMANOVA analyses for biome groups on resamples of metagenomes. To unambiguously determine which set of enzyme genes produce the highest separation of metagenomes into biome groups, PERMANOVA analyses were performed using fixed-size resamples of metagenomes over fixed-size profiles of enzyme categories. Considering that the higher the F-statistic, the more likely is to reject the null hypothesis of no differences between groups, the category of oxidoreductase genes (Enzyme Commission 1, EC1) showed the highest separation of biomes. These results confirm those from Table 1, but the difference is that here we removed variables or methods from the previous analysis that might affect the comparison, such as different profile size (last column in Table 1), different dataset sizes (metagenomes sequenced at different depths), the use of normalization methods (such as ratios, rankings or rarefaction methods) and the use of a reference database (Kegg protein sequences with assigned orthology) that might potentially include bad annotated sequences. More details of this analysis can be found in the text of this supplementary material (section Group variances analysis).



## Figure S6

Sketch of the sequence analysis process of the metagenomic datasets for constructing the data profiles. Each metagenomic dataset of sequences (colored squares on the left) was assigned a biome (color) according to its origin (Figure 1 and Table S1). For simplicity, this figure does not include all the biome colors or the exact number of metagenomes per biome (for precise information about this see Figure 1 and Table S1). Every metagenomic dataset was aligned (at sequence reads level) to three reference databases (indicated in the figure), resulting in two sets of profiles, sequence counts profiles and base-pairs counts (alignment length) profiles (upper right) from which three sets of profiles were constructed: profiles of counts of resamples by completeness for diversity analyses; ranking profiles and variance stabilized profiles (bottom). We did not include in this sketch the analysis carried out with mi-faser (Figure S5) as it deviates from the normal pipeline depicted in this figure (e.g., it does not make use of bit-score information). More detailed description of this can be found in the text of this supplementary material.



## Figure S7

Representative taxa per biome. Taxonomic representatives per biomes were estimated with the relative abundances of genes encoding ribosomal proteins. Only the top represented taxa per biomes are shown in this plot. The biomes per taxon are in clockwise order, starting from the biome where the taxon was best ranked. For example, Verrucomicrobia was found best ranked in the following biomes in this order: freshwater, forest soil, grasslands, polar deserts and rizhosphere.

### **TABLES**

The tables of this text are presented in the following pages.

# Table S1

| Row | Numbe<br>r of<br>dataset<br>s | Biome                                                                                                                 | Dataset name prefix used in this study | Source                                                                                                                                                                                                                                                         |
|-----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | 2                             | Acidic cave biofilms                                                                                                  | AC_AS5, AC_RS9                         | Metagenomic evidence for sulfide oxidation in extremely acidic cave biofilms (21)                                                                                                                                                                              |
| 2   | 1                             | Acidic cave biofilms                                                                                                  | AC_frassasi                            | Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm (22)                                                                                                                                                                           |
| 3   | 1                             | Animal associated (Canine gut)                                                                                        | AA_canine_gut                          | MG-RAST id 4444703.3                                                                                                                                                                                                                                           |
| 4   | 1                             | Animal associated (Chicken cecum)                                                                                     | AA_chicken_cecum                       | MG-RAST id 4440283.3                                                                                                                                                                                                                                           |
| 5   | 1                             | Animal associated (Cow rumen)                                                                                         | AA_cow_rumen                           | MG-RAST id 4441679.3                                                                                                                                                                                                                                           |
| 6   | 18                            | Animal associated (Human gut)                                                                                         | AA_TS                                  | A core gut microbiome in obese and lean twins (23)                                                                                                                                                                                                             |
| 7   | 5                             | Animal associated (Human gut)                                                                                         | AA_J                                   | Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes (24). (MG-RAST ids: 4524574.3, 4525093.3, 4525311.3, 4525312.3, 4525314.3)                                                                                              |
| 8   | 3                             | Animal associated (Human gut)                                                                                         | AA_Amz                                 | Human gut microbiome viewed across age and geography (25). (three representative datasets were used with MG-RAST ids: 4461123.3, 4461130.3, 4461138.3)                                                                                                         |
| 9   | 12                            | Animal associated (Human anterior nares, supragingival plaque, stool, buccal mucosa, tongue dorsum, posterior fornix) | AA_man, AA_woman                       | Strains, functions and dynamics in the expanded Human Microbiome Project (26). (selected samples from NCBI-SRA: SRR1804441, SRR1804072, SRR1804057, SRR1804053,SRR1804209, SRR1804011, SRR1804840, SRR1804073, SRR1803288, SRR1804442, SRR1804835, SRR1804059) |
| 10  | 2                             | Animal associated (Canine gut)                                                                                        | AA_K9                                  | Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice (27)                                                                                                                                  |

| 11 | 3  | Freshwater (River)                                                 | FW_Amazon_2015                      | Metagenomic and metatranscriptomic inventories of the lower Amazon River (28). (three representative metagenomes were used with NCBI sra ids: SRR1796118, SRR1796234 and SRR1796236) |
|----|----|--------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | 1  | Freshwater (River)                                                 | FW_Amazon_2011                      | Metagenomics of the water column in the pristine upper course of the amazon river (29)                                                                                               |
| 13 | 1  | Freshwater (Lake)                                                  | FW_Lake_lanier                      | Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem (30)                        |
| 14 | 1  | Freshwater (Ice)                                                   | FW_Ice_germany                      | Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome (31)                                                                                             |
| 15 | 8  | Hot spring                                                         | HS                                  | Comparative metagenomics of eight geographically remote terrestrial hot springs (32)                                                                                                 |
| 16 | 16 | Oxygen minimum zone                                                | MOMZ_2009,2010,2011                 | Initiative for the study of microbial communities in low oxygen zones. CAMERA project CAM_P_000692                                                                                   |
| 17 | 2  | Oxygen minimum zone                                                | MOMZ_Arabian                        | Metagenomic analysis of nitrogen and methane cycling in the Arabian sea oxygen minimum zone (OMZ) (33)                                                                               |
| 18 | 8  | Oxygen minimum zone,<br>Marine aphotic zone,<br>Marine photic zone | MOMZ_moomz1, MAZ_moomz1, MPZ moomz1 | Microbial metatranscriptomics in a permanent marine oxygen minimum zone (34)                                                                                                         |
| 19 | 4  | Marine benthic zone and subseafloor                                | MBZ_ODPperu                         | Metagenomic signatures of the Peru margin subseafloor biosphere show a genetically distinct environment (35)                                                                         |
| 20 | 1  | Marine benthic zone and subseafloor                                | MBZ_Brazos_trinity                  | Metagenomics of the subsurface Brazos-Trinity Basin (IODP site 1320): comparison with other sediment and pyrosequenced metagenomes (36)                                              |
| 21 | 2  | Marine benthic zone and subseafloor                                | MBZ_Marmara_sea                     | Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara (37)                                                                                   |
| 22 | 7  | Marine benthic zone and subseafloor                                | MBZ_sediment_petroleu<br>m          | Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea (38)                                                  |
| 23 | 2  | Marine benthic zone and subseafloor                                | MBZ_tonya_seep                      | A metagenomic study of methanotrophic microorganisms in coal oil point seep sediments (39)                                                                                           |
| 24 | 11 | Marine benthic zone and subseafloor                                | MBZ_BalticSea                       | Metagenomes from deep Baltic Sea sediments reveal how past and present environmental conditions determine microbial community composition (40)                                       |

| 25 | 6  | Marine cold seep                        | MCS_3d-brine, MCS_6d_brine | Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool (41)                                    |
|----|----|-----------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26 | 1  | Marine cold seep                        | MCS_nyegga                 | Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments (42)                                    |
| 27 | 1  | Marine aphotic zone<br>(trench)         | MAZ_Hellenic_trench        | Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean sea, Matapan-Vavilov Deep (43)                   |
| 28 | 1  | Marine aphotic zone<br>(trench)         | MAZ_Pto_rico_trench        | Going deeper: metagenome of a hadopelagic microbial community (44)                                                                                       |
| 29 | 6  | Marine photic zone, Marine aphotic zone | MAZ_HOT, MPZ_HOT           | Comparative metagenomic analysis of a microbial community residing at a depth of 4000 meters at station ALOHA in the North Pacific Subtropical Gyre (45) |
| 30 | 9  | Marine photic zone                      | MPZ_Tara                   | Structure and function of the global ocean microbiome (46)                                                                                               |
| 31 | 12 | Hydrothermal vent                       | MHV_SRR*_Lau               | Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center (47)                               |
| 32 | 2  | Hydrothermal vent                       | MHV_shallow_ne_taiwan      | Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system (48)                                                 |
| 33 | 1  | Hydrothermal vent                       | MHV_jan                    | Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated metaomics (49).    |
| 34 | 4  | Mangrove sediment                       | MS_BrMgv                   | The microbiome of Brazilian mangrove sediments as revealed by metagenomics (50)                                                                          |
| 35 | 2  | Mangrove sediment                       | MS_CS                      | Rhizosphere microbiome metagenomics of gray mangroves ( <i>Avicennia marina</i> ) in the Red Sea (51)                                                    |
| 36 | 4  | Mangrove rhizosphere                    | MS_SRP_RSMgr               | Rhizosphere microbiome metagenomics of gray mangroves ( <i>Avicennia marina</i> ) in the Red Sea (51)                                                    |
| 37 | 6  | Polar desert                            | SPD_EB                     | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (52)                                                      |
| 38 | 2  | Polar desert                            | SPD_Hypoliths              | Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts (53)                                 |
| 39 | 3  | Hot desert                              | SHD                        | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (52)                                                      |

| 40 | 2  | Soil forest (tropical forest)             | SFO_tropical           | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (52)                                                                            |
|----|----|-------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41 | 1  | Soil forest (boreal forest)               | SFO_boreal             | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (52)                                                                            |
| 42 | 1  | Soil forest (temperate deciduous forest)  | SFO_temp_deci          | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (52)                                                                            |
| 43 | 1  | Soil forest (temperate coniferous forest) | SFO_coni               | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (52)                                                                            |
| 44 | 1  | Soil forest (temperate grassland)         | SFO_temp_grassland     | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (52)                                                                            |
| 45 | 1  | Soil forest (temperate forest)            | SFO_hardvard_forest    | Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities (54) (only metagenomes were considered from this study) |
| 46 | 1  | Soil forest (tropical forest)             | SFO_Pru_toh_daeng      | Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis (55)                                   |
| 47 | 1  | Tropical forest                           | SFO_Pto_rico_luquillo  | Luquillo experimental forest study, Puerto Rico. NCBI SRA id SRP001743                                                                                                         |
| 48 | 3  | Grassland                                 | SGL_*_Rothamsted       | Structure, fluctuation and magnitude of a natural grassland soil metagenome (56)                                                                                               |
| 49 | 15 | Grassland                                 | SGL_4485               | Impact of long-term N,P,K and NPK fertilization on the compositional and potential functions of the bacterial community in grassland soil (57)                                 |
| 50 | 1  | Rhizosphere                               | SRP_J1rhizo_Rothamsted | Structure, fluctuation and magnitude of a natural grassland soil metagenome (56)                                                                                               |
| 51 | 6  | Rhizosphere                               | SRP_Barley             | Structure and function of the bacterial root microbiota in wild and domesticated barley (58)                                                                                   |
| 52 | 6  | Rhizosphere                               | SRP_mgm4487            | Functional congruence of rhizosphere microbial communities associated to leguminous tree from Brazilian semiarid region (59)                                                   |
| 53 | 1  | Solar saltern                             | SSM_Cahuil             | Metagenome sequencing of the microbial community of a solar saltern crystallizer pond at Cahuil lagoon, Chile (60)                                                             |
| 54 | 7  | Salt desert                               | SSM_S[1-7]             | A snapshot of microbial communities from the Kutch, one of the largest salt deserts in the World (61)                                                                          |
| 55 | 4  | Solar saltern                             | SSM_santa_pola         | New abundant microbial groups in aquatic hypersaline environments (62)                                                                                                         |

| 56 | 3 | Subterraneum               | STHS_ | Diverse sulfur metabolisms from two subterranean sulfidic spring systems |
|----|---|----------------------------|-------|--------------------------------------------------------------------------|
|    |   | (subterranean hot springs) |       | (63)                                                                     |
| 57 | 5 | Subterraneum               | ST_   | A metagenomic window into carbon metabolism at 3km depth in              |
|    |   |                            |       | Precambrian continental crust (64)                                       |

Table S2

Different profiles of ranking of genes separating metagenomes into biomes groups at different coverage percentages of sequence information

| Category                     | PERMANOVA F<br>statistic<br>(90% coverage) | PERMANOVA F<br>statistic<br>(80% coverage) | PERMANOVA F<br>statistic<br>(70% coverage) | PERMANOVA F<br>statistic<br>(60% coverage) | PERMANOVA F<br>statistic<br>(50% coverage) | Profile<br>size |
|------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------|
| All KEGG protein orthologies | 15.96617                                   | 18.74589                                   | 20.63887                                   | 21.94649                                   | 23.12362                                   | 6,789           |
| All enzymes                  | 22.16813                                   | 23.06131                                   | 23.51528                                   | 23.5733                                    | 24.62584                                   | 1,826           |
| Oxidoreductases              | 21.46566                                   | 24.47962                                   | 26.29865                                   | 28.984                                     | 29.13182                                   | 484             |
| Transferases                 | 23.61112                                   | 23.60262                                   | 22.85                                      | 22.35255                                   | 22.01938                                   | 541             |
| Hydrolases                   | 22.88798                                   | 23.70751                                   | 23.82132                                   | 24.0186                                    | 25.78586                                   | 423             |
| Lyases                       | 25.94873                                   | 25.4859                                    | 24.55671                                   | 24.48155                                   | 26.4212                                    | 211             |
| Isomerases                   | 26.83865                                   | 27.80602                                   | 25.64842                                   | 25.71113                                   | 18.75029                                   | 103             |
| Ligases                      | 26.51808                                   | 25.78329                                   | 22.90783                                   | 22.54884                                   | 20.60366                                   | 94              |
| Transporters                 | 17.50794                                   | 19.65666                                   | 21.3858                                    | 23.37097                                   | 25.19628                                   | 1,869           |
| Taxonomy (species)           | 2.400858                                   | 2.582031                                   | 2.850984                                   | 3.148067                                   | 3.713205                                   | 4,011           |
| Taxonomy (4th rank)          | 4.289553                                   | 4.673616                                   | 5.246327                                   | 5.441026                                   | 6.74631                                    | 365             |

Different sets of profiles of rankings of gene abundances were evaluated at different coverage percentages (starting from the most abundant) to determine under which of them the separation of metagenomes (microbial communities) into biome groups is most significant. The PERMANOVA statistical test (all p-values < 0.001) indicates that when we leave out at least the 30% (or 70% of coverage percentage) of the rarest genes in each category, the profiles of oxidoreductases start to be the category with higher statistically supported differences between the biomes (highest value in bold typeface, the higher the F-statistic, the more likely is to reject the null hypothesis of no differences between groups). This is most likely due to the fact that the rarest genes have the higher rank values (rankings start from the most abundant with number 1), thus producing a higher variation in the metagenomes associated with the same biomes, affecting the MIC correlation. For this reason we opted for presenting this statistics in Table 1 with the 100% of the sequence information (coverage percentage) from each metagenome but with stabilized variances of the sequences (base pairs) counts. Hence, homogeneous weights are given to abundant and rare genes. More details of this analysis can be found in the text of this supplementary material (section Group variances analysis).

## Table S3

Selected enzymes (50 for each enzyme category) from the gold-standard (GS+) database in the mi-faser package. Oxidoreductases: rows 1-50, transferases: rows 51-100, hydrolases: rows 101-150, lyases: rows 151-200, isomerases: rows 201-250, ligases: rows 251-300 and all enzymes combined: rows 301-350. The names of the enzymes in this table were retrieved directly from the GS+ database without reformatting.

| Row | EC number | Oxidoreductase                                                                                                                 |
|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| 1   | 1.4.1.4   | NADP-specific glutamate dehydrogenase (NADP-GDH) (EC 1.4.1.4)                                                                  |
|     |           |                                                                                                                                |
| 2   | 1.11.1.21 | Catalase-peroxidase (CP) (EC 1.11.1.21) (Hydroperoxidase I) (HPI) (Peroxidase/catalase)                                        |
| 3   | 1.4.7.1   | Ferredoxin-dependent glutamate synthase 2 (EC 1.4.7.1) (FD-GOGAT)                                                              |
| 4   | 1.2.7.3   | Gapor Gor Glyceraldehyde-3-phosphate:ferredoxin oxidoreductase                                                                 |
|     |           |                                                                                                                                |
| _   | 4643      | NAD(P) transhydrogenase subunit alpha (EC 1.6.1.2) (Nicotinamide nucleotide transhydrogenase subunit alpha) (Pyridine          |
| 5   | 1.6.1.2   | nucleotide transhydrogenase subunit alpha)                                                                                     |
| 6   | 1.8.1.19  | SudB Sulfide dehydrogenase subunit beta                                                                                        |
| 7   | 1.7.99.4  | Periplasmic nitrate reductase (EC 1.7.99.4)                                                                                    |
|     |           |                                                                                                                                |
|     |           | 3-oxoacyl-[acyl-carrier-protein] reductase FabG (EC 1.1.1.100) (3-ketoacyl-acyl carrier protein reductase) (Beta-Ketoacyl-acyl |
| 8   | 1.1.1.100 | carrier protein reductase) (Beta-ketoacyl-ACP reductase)                                                                       |
| 9   | 1.11.1.6  | Catalase (EC 1.11.1.6)                                                                                                         |
| 10  | 1.18.6.1  | nifH Fe protein of nitrogenase                                                                                                 |
|     |           |                                                                                                                                |
| 11  | 1.8.5.4   | Sulfide-quinone reductase (SQR) (EC 1.8.5.4) (Sulfide:quinone oxidoreductase)                                                  |
| 12  | 1.2.4.1   | Pyruvate dehydrogenase E1 component (PDH E1 component) (EC 1.2.4.1)                                                            |
|     |           |                                                                                                                                |
| 13  | 1.1.1.22  | UDP-glucose 6-dehydrogenase YwqF (UDP-Glc dehydrogenase) (UDP-GlcDH) (UDPGDH) (EC 1.1.1.22)                                    |
| 14  | 1.17.1.10 | Formate dehydrogenase alpha subunit FdhA                                                                                       |
|     |           |                                                                                                                                |
| 15  | 1.1.1.205 | Inosine-5'-monophosphate dehydrogenase (IMP dehydrogenase) (IMPD) (IMPDH) (EC 1.1.1.205)                                       |

| 16 | 1.17.4.1  | Ribonucleoside-diphosphate reductase subunit beta (EC 1.17.4.1) (Ribonucleotide reductase small subunit)                                                                                                                                                                                    |
|----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17 | 1.10.3.10 | Cytochrome bo(3) ubiquinol oxidase subunit 1 (EC 1.10.3.10) (Cytochrome b562-o complex subunit I) (Cytochrome o ubiquinol oxidase subunit 1) (Cytochrome o subunit 1) (Oxidase bo(3) subunit 1) (Ubiquinol oxidase chain A) (Ubiquinol oxidase polypeptide I) (Ubiquinol oxidase subunit 1) |
| 18 | 1.10.3.9  | Photosystem II protein D1 1 (PSII D1 protein 1) (EC 1.10.3.9) (Photosystem II Q(B) protein 1)                                                                                                                                                                                               |
| 19 | 1.2.4.4   | 3-methyl-2-oxobutanoate dehydrogenase subunit beta (EC 1.2.4.4) (Branched-chain alpha-ketoacid dehydrogenase E1 component subunit beta) (BCKADH E1-beta)                                                                                                                                    |
| 20 | 1.2.1.12  | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) (NAD-dependent glyceraldehyde-3-phosphate dehydrogenase)                                                                                                                                                                     |
|    | 1.1.1.42  | Isocitrate dehydrogenase [NADP] (IDH) (EC 1.1.1.42) (IDP) (NADP(+)-specific ICDH) (Oxalosuccinate decarboxylase)                                                                                                                                                                            |
| 22 | 1.2.7.10  | Oxalate oxidoreductase subunit delta (OOR delta subunit) (EC 1.2.7.10)                                                                                                                                                                                                                      |
| 23 | 1.2.7.4   | cdhA acetyl-CoA decarbonylase/synthase complex subunit alpha                                                                                                                                                                                                                                |
| 24 | 1.8.1.9   | Thioredoxin reductase (TRXR) (EC 1.8.1.9)                                                                                                                                                                                                                                                   |
| 25 | 1.17.2.1  | Nicotinate dehydrogenase subunit B (EC 1.17.2.1) (Nicotinate degradation protein B) (Nicotinate dehydrogenase large subunit)                                                                                                                                                                |
|    |           | Aspartate-semialdehyde dehydrogenase (ASA dehydrogenase) (ASADH) (EC 1.2.1.11) (Aspartate-beta-semialdehyde                                                                                                                                                                                 |
|    | 1.2.1.11  | dehydrogenase)                                                                                                                                                                                                                                                                              |
| 27 | 1.97.1.12 | Photosystem I P700 chlorophyll a apoprotein A1 (EC 1.97.1.12) (PsaA)                                                                                                                                                                                                                        |
| 28 | 1.1.1.37  | Malate dehydrogenase (EC 1.1.1.37)                                                                                                                                                                                                                                                          |
| 29 | 1.8.1.4   | Dihydrolipoyl dehydrogenase (EC 1.8.1.4) (Dihydrolipoamide dehydrogenase) (E3 component of pyruvate and 2-oxoglutarate dehydrogenases complexes) (Glycine cleavage system L protein)                                                                                                        |
| 30 | 1.1.1.85  | 3-isopropylmalate dehydrogenase (EC 1.1.1.85) (3-IPM-DH) (Beta-IPM dehydrogenase) (IMDH)                                                                                                                                                                                                    |
| 31 | 1.12.99.6 | HyaB Hydrogenase-1 large chain                                                                                                                                                                                                                                                              |
|    |           | <del></del>                                                                                                                                                                                                                                                                                 |

| 32 | 1.6.5.2   | Glutathione-regulated potassium-efflux system ancillary protein KefF (Quinone oxidoreductase KefF) (EC 1.6.5.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33 | 1.15.1.2  | Desulfoferrodoxin (Dfx) (EC 1.15.1.2) (Superoxide reductase) (SOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34 | 1.4.1.2   | NAD-specific glutamate dehydrogenase (NAD-GDH) (EC 1.4.1.2) (NAD(+)-dependent glutamate dehydrogenase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 35 | 1.1.1.23  | Histidinol dehydrogenase (HDH) (EC 1.1.1.23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 36 | 1.11.1.1  | NADH peroxidase (NPXase) (Npx) (EC 1.11.1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | 1.9.3.1   | Cytochrome c oxidase polypeptide 2A (EC 1.9.3.1) (Cytochrome c ba(3) subunit IIA) (Cytochrome c oxidase polypeptide IIA) (Cytochrome cba3 subunit 2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 38 | 1.4.1.1   | Alanine dehydrogenase (EC 1.4.1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 39 | 1.1.1.271 | GDP-L-fucose synthase (EC 1.1.1.271) (GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -  | 1.4.1.16  | Meso-diaminopimelate D-dehydrogenase (DAPDH) (Meso-DAP dehydrogenase) (EC 1.4.1.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 41 | 1.3.5.1   | Succinate dehydrogenase flavoprotein subunit (EC 1.3.5.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 42 | 1.1.1.49  | Glucose-6-phosphate 1-dehydrogenase (G6PD) (EC 1.1.1.49)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 43 | 1.3.1.9   | Enoyl-[acyl-carrier-protein] reductase [NADH] Fabl (ENR) (EC 1.3.1.9) (NADH-dependent enoyl-ACP reductase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 44 |           | AprA Adenylylsulfate reductase, subunit A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | 1.0.33.2  | The trial conjugation of the constant of the c |
| 45 | 1.2.99.2  | Carbon monoxide dehydrogenase large chain (CO dehydrogenase subunit L) (CO-DH L) (EC 1.2.99.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    |           | 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin) (EC 1.17.7.3) (1-hydroxy-2-methyl-2-(E)-butenyl 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 46 | 1.17.7.3  | diphosphate synthase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |           | Gamma-glutamyl phosphate reductase (GPR) (EC 1.2.1.41) (Glutamate-5-semialdehyde dehydrogenase) (Glutamyl-gamma-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 47 | 1.2.1.41  | semialdehyde dehydrogenase) (GSA dehydrogenase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |           | Dihydroorotate dehydrogenase B (NAD(+)), catalytic subunit (DHOD B) (DHODase B) (DHOdehase B) (EC 1.3.1.14) (Dihydroorotate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 48 | 1.3.1.14  | oxidase B) (Orotate reductase (NADH))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49 | 1.1.1.2   | Aldehyde reductase Ahr (EC 1.1.1.2) (Zinc-dependent alcohol dehydrogenase Ahr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|     |           | Sulfopropanediol 3-dehydrogenase (EC 1.1.1.308) (2,3-dihydroxypropane-1-sulfonate 3-dehydrogenase (sulfolactate forming))    |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------|
| 50  | 1.1.1.308 | (DHPS 3-dehydrogenase (sulfolactate forming))                                                                                |
| Row | EC number | Transferase name                                                                                                             |
|     |           | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase    |
| 51  | 2.7.7.6   | subunit beta')                                                                                                               |
| 52  | 2.3.1.54  | Formate acetyltransferase 1 (EC 2.3.1.54) (Pyruvate formate-lyase 1)                                                         |
|     |           |                                                                                                                              |
| 53  | 2.7.7.8   | Polyribonucleotide nucleotidyltransferase (EC 2.7.7.8) (Polynucleotide phosphorylase) (PNPase)                               |
|     |           |                                                                                                                              |
| F 4 | 2 4 4 42  | Methionine synthase (EC 2.1.1.13) (5-methyltetrahydrofolatehomocysteine methyltransferase) (Methionine synthase, vitamin-    |
| 54  | 2.1.1.13  | B12-dependent) (MS)                                                                                                          |
| 55  | 2.7.9.2   | Phosphoenolpyruvate synthase (PEP synthase) (EC 2.7.9.2) (Pyruvate, water dikinase)                                          |
| 56  |           | Serine/threonine-protein kinase PknA (EC 2.7.11.1)                                                                           |
| 57  |           | Signal-transduction histidine kinase senX3 (EC 2.7.13.3)                                                                     |
|     |           |                                                                                                                              |
| 58  | 2.5.1.6   | S-adenosylmethionine synthase (AdoMet synthase) (EC 2.5.1.6) (MAT) (Methionine adenosyltransferase)                          |
| 59  | 2.1.2.1   | Serine hydroxymethyltransferase (SHMT) (Serine methylase) (EC 2.1.2.1)                                                       |
| 60  | 2.7.2.3   | Phosphoglycerate kinase (EC 2.7.2.3)                                                                                         |
|     |           |                                                                                                                              |
|     |           |                                                                                                                              |
|     |           | Glutaminefructose-6-phosphate aminotransferase [isomerizing] (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase)         |
|     |           | (GFAT) (Glucosamine-6-phosphate synthase) (Hexosephosphate aminotransferase) (L-glutamineD-fructose-6-phosphate              |
| 61  | 2.6.1.16  | amidotransferase)                                                                                                            |
| 63  | 2.5.1.47  | Cystoine synthese A (CSeco A) (FC 2 F 1 47) (O ecotyleoxine (thiel) byces A) (OAS TLA) (O ecotyleoxine sylfhydryless A)      |
| 62  |           | Cysteine synthase A (CSase A) (EC 2.5.1.47) (O-acetylserine (thiol)-lyase A) (OAS-TL A) (O-acetylserine sulfhydrylase A)     |
| 63  | 2.7.7.7   | pol DNA polymerase, archaea type                                                                                             |
| 64  | 2.3.1.41  | Phenolphthiocerol synthesis polyketide synthase type I Pks15/1 (Beta-ketoacyl-acyl-carrier-protein synthase I) (EC 2.3.1.41) |
| 65  |           | Cysteine desulfurase SufS (EC 2.8.1.7)                                                                                       |
| 65  | 2.8.1.7   | Cysteine desulturase SufS (EC 2.8.1.7)                                                                                       |

| 66  | 2.7.2.4   | Aspartate kinase Ask_Ect (EC 2.7.2.4) (Aspartokinase)                                                                                                                                       |
|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 67  | 2 2 2 4 2 |                                                                                                                                                                                             |
| 67  | 2.3.3.13  | 2-isopropylmalate synthase (EC 2.3.3.13) (Alpha-IPM synthase) (Alpha-isopropylmalate synthase)                                                                                              |
| 68  | 2.6.1.83  | LL-diaminopimelate aminotransferase (DAP-AT) (DAP-aminotransferase) (LL-DAP-aminotransferase) (EC 2.6.1.83)                                                                                 |
| 69  | 2.2.1.1   | Transketolase 1 (TK 1) (EC 2.2.1.1)                                                                                                                                                         |
| 70  | 2.1.2.11  | 3-methyl-2-oxobutanoate hydroxymethyltransferase (EC 2.1.2.11) (Ketopantoate hydroxymethyltransferase) (KPHMT)                                                                              |
| 71  | 2.7.1.30  | Glycerol kinase (EC 2.7.1.30) (ATP:glycerol 3-phosphotransferase) (Glycerokinase) (GK)                                                                                                      |
| 72  | 2.5.1.19  | 3-phosphoshikimate 1-carboxyvinyltransferase (EC 2.5.1.19) (5-enolpyruvylshikimate-3-phosphate synthase) (EPSP synthase) (EPSPS)                                                            |
| 73  | 2.2.1.6   | Acetolactate synthase large subunit IIvG (ALS) (EC 2.2.1.6) (Acetohydroxy-acid synthase large subunit) (AHAS)                                                                               |
| 74  | 2.7.1.11  | ATP-dependent 6-phosphofructokinase (ATP-PFK) (Phosphofructokinase) (EC 2.7.1.11) (Phosphohexokinase)                                                                                       |
|     |           |                                                                                                                                                                                             |
|     |           | UTPglucose-1-phosphate uridylyltransferase (EC 2.7.7.9) (Alpha-D-glucosyl-1-phosphate uridylyltransferase) (General stress                                                                  |
| 75  | 2.7.7.9   | protein 33) (GSP33) (UDP-glucose pyrophosphorylase) (UDPGP) (Uridine diphosphoglucose pyrophosphorylase)                                                                                    |
| 76  | 2.3.3.9   | Malate synthase G (EC 2.3.3.9)                                                                                                                                                              |
| 77  | 2.2.1.7   | 1-deoxy-D-xylulose-5-phosphate synthase (EC 2.2.1.7) (1-deoxyxylulose-5-phosphate synthase) (DXP synthase) (DXPS)                                                                           |
| 78  |           | (R)-citramalate synthase (EC 2.3.1.182) (Citramalate synthase)                                                                                                                              |
| 7.5 | 2.3.2.202 | 3-oxoacyl-[acyl-carrier-protein] synthase 2 (EC 2.3.1.179) (3-oxoacyl-[acyl-carrier-protein] synthase II) (Beta-ketoacyl-ACP                                                                |
| 79  | 2.3.1.179 | synthase II) (KAS II)                                                                                                                                                                       |
|     |           | 1. A plake plugge kangking gangga ClaD (FC 2.4.1.40) (4.4 plake D plugga 4.4 plake D plugga College College Liver Server) (Alake (4.4)                                                      |
| 80  | 2.4.1.18  | 1,4-alpha-glucan branching enzyme GlgB (EC 2.4.1.18) (1,4-alpha-D-glucan:1,4-alpha-D-glucan 6-glucosyl-transferase) (Alpha-(1->4)-glucan branching enzyme) (Glycogen-branching enzyme) (BE) |
|     | -         |                                                                                                                                                                                             |
| 81  | 2.7.7.24  | Glucose-1-phosphate thymidylyltransferase (EC 2.7.7.24) (dTDP-glucose pyrophosphorylase) (dTDP-glucose synthase)                                                                            |

|          | l         |                                                                                                                                                                                                                       |
|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 82       | 2.7.7.87  | Threonylcarbamoyl-AMP synthase (TC-AMP synthase) (EC 2.7.7.87) (L-threonylcarbamoyladenylate synthase) (t(6)A37 threonylcarbamoyladenosine biosynthesis protein YwlC)                                                 |
| 83       | 2.7.4.6   | Nucleoside diphosphate kinase (NDK) (NDP kinase) (EC 2.7.4.6) (Nucleoside-2-P kinase)                                                                                                                                 |
| 84       | 2.5.1.7   | UDP-N-acetylglucosamine 1-carboxyvinyltransferase (EC 2.5.1.7) (Enoylpyruvate transferase) (UDP-N-acetylglucosamine enolpyruvyl transferase) (EPT)                                                                    |
| 85       | 2.4.2.14  | Amidophosphoribosyltransferase (ATase) (EC 2.4.2.14) (Glutamine phosphoribosylpyrophosphate amidotransferase) (GPATase)                                                                                               |
| 86<br>87 | 2.3.1.9   | Acetyl-CoA acetyltransferase (EC 2.3.1.9) (Acetoacetyl-CoA thiolase) (Beta-ketothiolase PhbA)                                                                                                                         |
| 87       | 2.4.1.1   | Maltodextrin phosphorylase (EC 2.4.1.1)                                                                                                                                                                               |
| 88       | 2.4.99.16 | Alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase (GMPMT) (EC 2.4.99.16) ((1->4)-alpha-D-glucan:maltose-1-phosphate alpha-D-maltosyltransferase) ((1->4)-alpha-D-glucan:phosphate alpha-D-maltosyltransferase) |
| 89       | 2.3.1.117 | 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase (EC 2.3.1.117) (Tetrahydrodipicolinate N-succinyltransferase) (Tetrahydropicolinate succinylase)                                                   |
| 90       | 2.8.1.1   | Thiosulfate sulfurtransferase YnjE (EC 2.8.1.1)                                                                                                                                                                       |
| 91       | 2.7.6.5   | GTP pyrophosphokinase YjbM (EC 2.7.6.5) ((p)ppGpp synthase YjbM) (Small alarmone synthase 1) (SAS 1)                                                                                                                  |
| 92       | 2.7.6.1   | Ribose-phosphate pyrophosphokinase (RPPK) (EC 2.7.6.1) (5-phospho-D-ribosyl alpha-1-diphosphate) (Phosphoribosyl diphosphate synthase) (Phosphoribosyl pyrophosphate synthase) (PRPP synthase) (PRPPase)              |
| 93       | 2.5.1.55  | 2-dehydro-3-deoxyphosphooctonate aldolase (EC 2.5.1.55) (3-deoxy-D-manno-octulosonic acid 8-phosphate synthase) (KDO-8-phosphate synthase) (KDOPS) (Phospho-2-dehydro-3-deoxyoctonate aldolase)                       |

| 94  | 2.7.4.22  | Uridylate kinase (UK) (EC 2.7.4.22) (Uridine monophosphate kinase) (UMP kinase) (UMPK)                                                                                                                      |
|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |           |                                                                                                                                                                                                             |
| 95  | 2.4.2.29  | Queuine tRNA-ribosyltransferase (EC 2.4.2.29) (Guanine insertion enzyme) (tRNA-guanine transglycosylase)                                                                                                    |
| 96  | 2.3.3.16  | Citrate synthase (EC 2.3.3.16)                                                                                                                                                                              |
| 97  | 2.1.3.3   | Ornithine carbamoyltransferase (OTCase) (EC 2.1.3.3)                                                                                                                                                        |
|     |           |                                                                                                                                                                                                             |
| 98  | 2.8.4.4   | Ribosomal protein S12 methylthiotransferase RimO (S12 MTTase) (S12 methylthiotransferase) (EC 2.8.4.4) (Ribosomal protein S12 (aspartate(89)-C(3))-methylthiotransferase) (Ribosome maturation factor RimO) |
|     |           |                                                                                                                                                                                                             |
| 99  | 2.8.1.8   | Lipoyl synthase (EC 2.8.1.8) (Lip-syn) (LS) (Lipoate synthase) (Lipoic acid synthase) (Sulfur insertion protein LipA)                                                                                       |
| 100 | 2.6.1.2   | Glutamate-pyruvate aminotransferase AlaA (EC 2.6.1.2)                                                                                                                                                       |
|     |           |                                                                                                                                                                                                             |
| Row | EC number | Hydrolase name                                                                                                                                                                                              |
|     |           |                                                                                                                                                                                                             |
| 101 | 3.6.4.12  | ATP-dependent helicase/deoxyribonuclease subunit B (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease RexB)                                                                                            |
|     |           |                                                                                                                                                                                                             |
| 102 | 3.6.3.14  | ATP synthase subunit alpha (EC 3.6.3.14) (ATP synthase F1 sector subunit alpha) (F-ATPase subunit alpha)                                                                                                    |
|     |           |                                                                                                                                                                                                             |
|     |           | Putative K(+)-stimulated pyrophosphate-energized sodium pump (EC 3.6.1.1) (Membrane-bound sodium-translocating                                                                                              |
| 103 | 3.6.1.1   | pyrophosphatase) (Pyrophosphate-energized inorganic pyrophosphatase) (Na(+)-PPase)                                                                                                                          |
| 104 | 3.6.3.54  | Copper-exporting P-type ATPase A (Protein CopA) (EC 3.6.3.54) (Cu(+)-exporting ATPase)                                                                                                                      |
|     |           |                                                                                                                                                                                                             |
| 105 | 3.6.5.n1  | Elongation factor 4 (EF-4) (EC 3.6.5.n1) (Ribosomal back-translocase LepA)                                                                                                                                  |
|     |           |                                                                                                                                                                                                             |
|     |           |                                                                                                                                                                                                             |
|     |           | Potassium-transporting ATPase ATP-binding subunit (EC 3.6.3.12) (ATP phosphohydrolase [potassium-transporting] B chain)                                                                                     |
| 106 | 3.6.3.12  | (Potassium-binding and translocating subunit B) (Potassium-translocating ATPase B chain)                                                                                                                    |
| 107 | 3.4.21.53 | Lon protease (EC 3.4.21.53) (ATP-dependent protease La)                                                                                                                                                     |
| 108 | 3.6.4.13  | Probable ATP-dependent RNA helicase YfmL (EC 3.6.4.13)                                                                                                                                                      |

| 400 | 2244       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 3.3.1.1    | Adenosylhomocysteinase (EC 3.3.1.1) (S-adenosyl-L-homocysteine hydrolase) (AdoHcyase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3.2.1.23   | Beta-galactosidase BgaB (Beta-gal) (EC 3.2.1.23) (Beta-Gal II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 111 | 3.6.3.8    | Calcium-transporting ATPase (EC 3.6.3.8) (Calcium pump)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |            | ATP-dependent Clp protease proteolytic subunit (EC 3.4.21.92) (Caseinolytic protease) (Endopeptidase Clp) (Heat shock protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 112 | 3.4.21.92  | F21.5) (Protease Ti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 113 | 3.2.1.3    | Glucan 1,4-alpha-glucosidase SusB (EC 3.2.1.3) (Alpha-glucosidase SusB) (Glucoamylase SusB) (Starch-utilization system protein B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 114 | 3.1.26.12  | Ribonuclease E (RNase E) (EC 3.1.26.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 115 | 3.6.3.32   | Carnitine transport ATP-binding protein OpuCA (EC 3.6.3.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 116 | 3.1.21.2   | Endonuclease 4 (EC 3.1.21.2) (Endodeoxyribonuclease IV) (Endonuclease IV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 117 | 3.2.1.86   | 6-phospho-beta-glucosidase GmuD (EC 3.2.1.86) (Aryl-phospho-beta-D-glucosidase BglD) (Glucomannan utilization protein D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -   | 3.5.1.5    | Urease subunit alpha (EC 3.5.1.5) (Urea amidohydrolase subunit alpha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 119 | 3.4.21.107 | Serine endoprotease DegS (EC 3.4.21.107) (Site-1 protease DegS) (S1P protease DegS) (Site-1-type intramembrane protease)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 3.4.11.2   | Aminopeptidase N (EC 3.4.11.2) (Alpha-aminoacylpeptide hydrolase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 3.4.17.19  | Carboxypeptidase 1 (EC 3.4.17.19) (BsuCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 122 | -          | Spermidine/putrescine import ATP-binding protein PotA (EC 3.6.3.31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |            | opening parameters (and the second parameters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 123 | 3.2.1.28   | Trehalase (EC 3.2.1.28) (Alpha,alpha-trehalase) (Alpha,alpha-trehalose glucohydrolase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 0.2.2.2    | The market (20 end 22) (this market is the market of (this market is a contract of the market is a contract of the market is a contract of the market of the |
| 124 | 3.5.1.10   | Formyltetrahydrofolate deformylase (EC 3.5.1.10) (Formyl-FH(4) hydrolase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 121 | 3.3.1.10   | romyneetanyaroroiate aeromynase (20 s.s.2.126) (romyn my my arorase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |            | RecBCD enzyme subunit RecD (EC 3.1.11.5) (Exodeoxyribonuclease V 67 kDa polypeptide) (Exodeoxyribonuclease V alpha chain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 125 | 3.1.11.5   | (Exonuclease V subunit RecD) (ExoV subunit RecD) (Helicase/nuclease RecBCD subunit RecD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _   | 3.4.11.18  | Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 120 | 3.4.11.10  | incumonine animopephicase 2 (war 2) (wetar 2) (LC 3.4.11.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 127 | 21211      | Fructose 1.6 hisphosphatase class 1 (FDDase class 1) (EC 2.1.2.11) (D. frustose 1.6 hisphosphata 1. phosphoby declass 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12/ | 3.1.3.11   | Fructose-1,6-bisphosphatase class 1 (FBPase class 1) (EC 3.1.3.11) (D-fructose-1,6-bisphosphate 1-phosphohydrolase class 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 128  | 3.5.4.13            | Deoxycytidine triphosphate deaminase (dCTP deaminase) (EC 3.5.4.13)                                                                   |
|------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 129  | 3.1.13.1            | Ribonuclease R (RNase R) (EC 3.1.13.1) (Protein VacB)                                                                                 |
|      |                     | Succinyl-diaminopimelate desuccinylase (SDAP desuccinylase) (EC 3.5.1.18) (N-succinyl-LL-2,6-diaminoheptanedioate                     |
| 130  | 3.5.1.18            | amidohydrolase)                                                                                                                       |
|      |                     |                                                                                                                                       |
|      |                     | Isoaspartyl peptidase (EC 3.4.19.5) (Beta-aspartyl-peptidase) (EcAIII) (Isoaspartyl dipeptidase) [Cleaved into: Isoaspartyl peptidase |
| 131  | 3.4.19.5            | subunit alpha; Isoaspartyl peptidase subunit beta]                                                                                    |
|      | 3.1.4.52            | Putative cyclic-di-GMP phosphodiesterase YjcC (EC 3.1.4.52)                                                                           |
|      | 3.2.2.27            | Uracil-DNA glycosylase (UDG) (EC 3.2.2.27)                                                                                            |
| 134  | 3.6.3.39            | Protein glycosylation K (EC 3.6.3.39)                                                                                                 |
|      |                     |                                                                                                                                       |
|      | 3.2.1.70            | Glucan 1,6-alpha-glucosidase (EC 3.2.1.70) (Dextran glucosidase) (Exo-1,6-alpha-glucosidase) (Glucodextranase)                        |
| 136  | 3.6.3.20            | sn-glycerol-3-phosphate import ATP-binding protein UgpC (EC 3.6.3.20)                                                                 |
|      |                     |                                                                                                                                       |
| 137  | 3.4.25.2            | ATP-dependent protease subunit HsIV (EC 3.4.25.2) (Heat shock protein HsIV)                                                           |
|      |                     |                                                                                                                                       |
| 420  | 22455               | Intracellular exo-alpha-(1->5)-L-arabinofuranosidase (ABF) (EC 3.2.1.55) (Intracellular arabinan exo-alpha-(1->5)-L-arabinosidase)    |
|      | 3.2.1.55            | (Arabinosidase)                                                                                                                       |
|      | 3.6.3.27            | Phosphate-import ATP-binding protein PhnC (EC 3.6.3.27)                                                                               |
| 140  | 3.5.4.25            | GTP cyclohydrolase-2 (EC 3.5.4.25) (GTP cyclohydrolase II)                                                                            |
| 1.41 | 2 1 1 61            | Chamatavia recognica acquiste a protein alutemente methodosterace (FC 2.1.1.C1)                                                       |
|      | 3.1.1.61<br>3.5.2.6 | Chemotaxis response regulator protein-glutamate methylesterase (EC 3.1.1.61)                                                          |
|      |                     | Beta-lactamase (EC 3.5.2.6) (Ambler class A beta-lactamase)                                                                           |
| 143  | 3.1.26.3            | Ribonuclease 3 (EC 3.1.26.3) (Ribonuclease III) (RNase III)                                                                           |
| 111  | 3.4.11.4            | Peptidase T (EC 3.4.11.4) (Aminotripeptidase) (Tripeptide aminopeptidase)                                                             |
| 144  | 3.4.11.4            | reptidase 1 (EC 3.4.11.4) (Aminotripeptidase) (Tripeptidase)                                                                          |
| 145  | 3.4.11.9            | Xaa-Pro aminopeptidase (EC 3.4.11.9) (Aminoacylproline aminopeptidase) (Aminopeptidase P II) (APP-II) (X-Pro aminopeptidase)          |
|      | 3.6.3.19            | Maltose/maltodextrin import ATP-binding protein MalK (EC 3.6.3.19)                                                                    |
| 140  | 5.0.5.15            | Marcose, marcodextrin import ATT binding protein main (Le 5.0.5.15)                                                                   |
| 147  | 3.4.25.1            | Proteasome subunit alpha (EC 3.4.25.1) (20S proteasome alpha subunit) (Proteasome core protein PrcA)                                  |
|      | 3.5.4.32            | 8-oxoguanine deaminase (EC 3.5.4.32)                                                                                                  |
|      | 1                   |                                                                                                                                       |

| 149  | 3.4.21.88 | LexA repressor (EC 3.4.21.88)                                                                                                                  |
|------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|
|      |           |                                                                                                                                                |
| 150  | 3.6.1.23  | Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) (EC 3.6.1.23) (dUTP pyrophosphatase)                                                |
| Row  | EC number | Lyase name                                                                                                                                     |
|      |           |                                                                                                                                                |
| 151  | 4.2.1.11  | Enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (2-phosphoglycerate dehydratase)                                                     |
| 152  | 4.2.1.46  | dTDP-glucose 4,6-dehydratase (EC 4.2.1.46)                                                                                                     |
|      |           |                                                                                                                                                |
| 152  | 4.2.1.3   | Aconitate hydratase A (ACN) (Aconitase) (EC 4.2.1.3) (Iron-responsive protein-like) (IRP-like) (RNA-binding protein) (Stationary phase enzyme) |
| 155  | 4.2.1.3   | priase enzyme)                                                                                                                                 |
| 154  | 4.1.1.49  | Phosphoenolpyruvate carboxykinase [ATP] (PCK) (PEP carboxykinase) (PEPCK) (EC 4.1.1.49)                                                        |
|      |           |                                                                                                                                                |
| 155  |           | Ribulose bisphosphate carboxylase large chain (RuBisCO large subunit) (EC 4.1.1.39)                                                            |
| 156  |           | Adenylosuccinate lyase (ASL) (EC 4.3.2.2) (Adenylosuccinase) (ASase)                                                                           |
| 157  | 4.2.1.20  | Tryptophan synthase alpha chain (EC 4.2.1.20)                                                                                                  |
|      |           |                                                                                                                                                |
|      |           | Phosphomethylpyrimidine synthase (EC 4.1.99.17) (Hydroxymethylpyrimidine phosphate synthase) (HMP-P synthase) (HMP-P                           |
| 158  | 4.1.99.17 | phosphate synthase) (HMPP synthase) (Thiamine biosynthesis protein ThiC)                                                                       |
|      |           |                                                                                                                                                |
| 159  | 4.2.1.47  | GDP-mannose 4,6-dehydratase (EC 4.2.1.47) (GDP-D-mannose dehydratase)                                                                          |
|      |           | Pyridoxal 5'-phosphate synthase subunit PdxS (PLP synthase subunit PdxS) (EC 4.3.3.6) (Pdx1) (Superoxide-inducible protein 7)                  |
| 160  | 4.3.3.6   | (SOI7)                                                                                                                                         |
| 161  | 4.2.1.2   | Fumarate hydratase class II (Fumarase C) (EC 4.2.1.2) (Iron-independent fumarase)                                                              |
|      |           | ,                                                                                                                                              |
| 162  | 4.2.1.36  | Homoaconitase small subunit (HACN) (EC 4.2.1.36) (Homoaconitate hydratase)                                                                     |
|      |           |                                                                                                                                                |
| 4.63 |           | Oleate hydratase (EC 4.2.1.53) (Fatty acid double bond hydratase) (Fatty acid hydratase) (Linoleate hydratase) (Myosin cross-                  |
| 163  | 4.2.1.53  | reactive antigen) (MCRA)                                                                                                                       |

|     | _         |                                                                                                                            |
|-----|-----------|----------------------------------------------------------------------------------------------------------------------------|
| 164 | 4.2.3.1   | Threonine synthase (TS) (EC 4.2.3.1)                                                                                       |
|     |           |                                                                                                                            |
| 165 | 4.2.1.24  | Delta-aminolevulinic acid dehydratase (ALAD) (ALADH) (EC 4.2.1.24) (Porphobilinogen synthase)                              |
|     |           |                                                                                                                            |
| 166 | 4.2.3.5   | Chorismate synthase (CS) (EC 4.2.3.5) (5-enolpyruvylshikimate-3-phosphate phospholyase) (EPSP phospholyase)                |
|     |           |                                                                                                                            |
| 167 | 4.1.3.36  | 1,4-dihydroxy-2-naphthoyl-CoA synthase (DHNA-CoA synthase) (EC 4.1.3.36)                                                   |
|     |           |                                                                                                                            |
|     |           | Fructose-bisphosphate aldolase class 2 (FBP aldolase) (FBPA) (EC 4.1.2.13) (Fructose-1,6-bisphosphate aldolase) (Fructose- |
| 168 | 4.1.2.13  | bisphosphate aldolase class II)                                                                                            |
|     |           |                                                                                                                            |
| 169 | 4.1.1.20  | Diaminopimelate decarboxylase (DAP decarboxylase) (DAPDC) (EC 4.1.1.20)                                                    |
| 170 | 4.1.3.1   | Isocitrate lyase (ICL) (EC 4.1.3.1) (Isocitrase) (Isocitratase)                                                            |
|     |           |                                                                                                                            |
|     |           | Phosphoenolpyruvate carboxykinase [GTP] (PEP carboxykinase) (PEPCK) (EC 4.1.1.32) (GTP-dependent phosphoenolpyruvate       |
| 171 | 4.1.1.32  | carboxykinase) (GTP-PEPCK)                                                                                                 |
|     | 4.3.2.1   | Argininosuccinate lyase (ASAL) (EC 4.3.2.1) (Arginosuccinase)                                                              |
| 173 | 4.1.3.27  | Anthranilate synthase component 1 (AS) (ASI) (EC 4.1.3.27)                                                                 |
|     |           |                                                                                                                            |
|     |           | Deoxyribodipyrimidine photo-lyase (EC 4.1.99.3) (Cyclobutane pyrimidine dimer photolyase) (CPD photolyase) (DNA photolyase |
| 174 | 4.1.99.3  | PhrA) (Photoreactivating enzyme PhrA)                                                                                      |
|     |           | Deoxyribose-phosphate aldolase (DERA) (EC 4.1.2.4) (2-deoxy-D-ribose 5-phosphate aldolase) (Phosphodeoxyriboaldolase)      |
| 175 | 4.1.2.4   | (Deoxyriboaldolase)                                                                                                        |
|     |           |                                                                                                                            |
| 176 | 4.4.1.24  | (2R)-sulfolactate sulfo-lyase subunit beta (EC 4.4.1.24) (Sulfolactate sulfo-lyase B)                                      |
|     |           |                                                                                                                            |
| 177 | 4.6.1.12  | 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MECDP-synthase) (MECPP-synthase) (MECPS) (EC 4.6.1.12)              |
|     | 4.1.1.37  | Uroporphyrinogen decarboxylase (UPD) (URO-D) (EC 4.1.1.37)                                                                 |
|     |           |                                                                                                                            |
| 179 | 4.7.1.1   | Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase (PRPn C-P lyase) (EC 4.7.1.1)                                     |
|     |           |                                                                                                                            |
| 180 | 4.2.99.18 | Endonuclease III (EC 4.2.99.18) (DNA-(apurinic or apyrimidinic site) lyase)                                                |
|     |           |                                                                                                                            |

|     | 1         |                                                                                                                                                                                                                          |
|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 181 | 4.4.1.21  | S-ribosylhomocysteine lyase (EC 4.4.1.21) (Al-2 synthesis protein) (Autoinducer-2 production protein LuxS)                                                                                                               |
| 182 | 4.1.99.13 | (6-4) photolyase (EC 4.1.99.13) ((6-4)DNA photolyase) (DNA photolyase PhrB) (Photoreactivating enzyme PhrB)                                                                                                              |
| 183 |           | Altronate dehydratase (EC 4.2.1.7) (D-altronate hydro-lyase)                                                                                                                                                             |
|     |           |                                                                                                                                                                                                                          |
| 184 | 4.1.1.23  | Orotidine 5'-phosphate decarboxylase (EC 4.1.1.23) (OMP decarboxylase) (OMPDCase) (OMPdecase)                                                                                                                            |
|     |           |                                                                                                                                                                                                                          |
| 185 | 4.2.1.115 | UDP-N-acetylglucosamine 4,6-dehydratase (inverting) (EC 4.2.1.115) (Pseudaminic acid biosynthesis protein B) (UDP-GlcNAc-inverting 4,6-dehydratase)                                                                      |
| 186 | +         | 3-dehydroquinate synthase (EC 4.2.3.4)                                                                                                                                                                                   |
|     |           |                                                                                                                                                                                                                          |
| 187 | 4.2.1.8   | D-galactonate dehydratase family member Ent638_1932 (EC 4.2.1) (D-mannonate dehydratase) (EC 4.2.1.8)                                                                                                                    |
|     |           |                                                                                                                                                                                                                          |
| 188 | 4.3.1.19  | L-threonine dehydratase biosynthetic IIvA (EC 4.3.1.19) (Threonine deaminase)                                                                                                                                            |
|     |           |                                                                                                                                                                                                                          |
| 189 | 4.2.1.10  | 3-dehydroquinate dehydratase (3-dehydroquinase) (EC 4.2.1.10) (Type I DHQase) (Type I dehydroquinase) (DHQ1)                                                                                                             |
| 190 | 4.1.1.31  | Phosphoenolpyruvate carboxylase (PEPC) (PEPCase) (EC 4.1.1.31)                                                                                                                                                           |
| 191 | 4.2.1.135 | UDP-N-acetyl-alpha-D-glucosamine C6 dehydratase (UDP-GlcNAc C6 dehydratase) (EC 4.2.1.135) (Protein glycosylation pathway protein F) (UDP-N-acetylglucosamine 4,6-dehydratase (configuration-retaining))                 |
| 192 | 4.1.1.48  | Indole-3-glycerol phosphate synthase (IGPS) (EC 4.1.1.48)                                                                                                                                                                |
| 193 | 4.1.1.61  | Phenolic acid decarboxylase subunit D (PAD) (EC 4.1.1) (4-hydroxybenzoate decarboxylase subunit D) (4-hydroxybenzoate DC) (EC 4.1.1.61) (Phenylacrylic acid decarboxylase subunit D) (Vanillate decarboxylase subunit D) |
| 194 | 4.2.1.1   | Carbonic anhydrase 1 (EC 4.2.1.1) (Carbonate dehydratase 1)                                                                                                                                                              |
| 405 | 42224     | Chondroitin sulfate ABC exolyase (EC 4.2.2.21) (Chondroitin ABC exoeliminase) (Chondroitin ABC lyase II) (Chondroitin sulfate                                                                                            |
| 195 | 4.2.2.21  | ABC lyase II) (ChS ABC lyase II) (Chondroitinase ABC II) (cABC II) (Exochondroitinase ABC)                                                                                                                               |

|     |           | Lactoylglutathione lyase (EC 4.4.1.5) (Aldoketomutase) (Glyoxalase I) (Glx I) (Ketone-aldehyde mutase) (Methylglyoxalase) (S-D- |
|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------|
| 196 | 4.4.1.5   | lactoylglutathione methylglyoxal lyase)                                                                                         |
| 130 |           | lacto y . B. a ta a more methy . B. y o xar ry as cy                                                                            |
| 197 | 4.2.1.150 | Short-chain-enoyl-CoA hydratase (EC 4.2.1.150) (3-hydroxybutyryl-CoA dehydratase) (Crotonase)                                   |
| 198 | 4.2.1.17  | 2,3-dehydroadipyl-CoA hydratase (EC 4.2.1.17) (Enoyl-CoA hydratase)                                                             |
|     |           |                                                                                                                                 |
| 199 | 4.1.99.12 | 3,4-dihydroxy-2-butanone 4-phosphate synthase (DHBP synthase) (EC 4.1.99.12)                                                    |
| 200 | 4.3.1.1   | Aspartate ammonia-lyase (Aspartase) (EC 4.3.1.1)                                                                                |
|     |           |                                                                                                                                 |
| Row | EC number | Isomerase name                                                                                                                  |
| 201 | 5.99.1.3  | DNA gyrase subunit A (EC 5.99.1.3)                                                                                              |
|     |           |                                                                                                                                 |
| 202 | 5.99.1.2  | DNA topoisomerase 1 (EC 5.99.1.2) (DNA topoisomerase I) (Omega-protein) (Relaxing enzyme) (Swivelase) (Untwisting enzyme)       |
|     |           |                                                                                                                                 |
| 203 | 5.3.1.9   | Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) (Phosphoglucose isomerase) (PGI) (Phosphohexose isomerase) (PHI)               |
|     |           | Methylthioribose-1-phosphate isomerase (M1Pi) (MTR-1-P isomerase) (EC 5.3.1.23) (S-methyl-5-thioribose-1-phosphate              |
| 204 | 5.3.1.23  | isomerase)                                                                                                                      |
| 205 | 5.4.99.2  | Methylmalonyl-CoA mutase (MCM) (EC 5.4.99.2)                                                                                    |
| 206 | 5.4.2.10  | Phosphoglucosamine mutase (EC 5.4.2.10)                                                                                         |
|     |           |                                                                                                                                 |
| 207 | 5.3.1.13  | Arabinose 5-phosphate isomerase GutQ (API) (G-API) (EC 5.3.1.13) (Phosphosugar aldol-ketol isomerase)                           |
|     |           | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPG-independent PGAM) (Phosphoglyceromutase) (iPGM) (EC            |
| 208 | 5.4.2.12  | 5.4.2.12)                                                                                                                       |
|     |           |                                                                                                                                 |
| 209 | 5.4.3.8   | Glutamate-1-semialdehyde 2,1-aminomutase (GSA) (EC 5.4.3.8) (Glutamate-1-semialdehyde aminotransferase) (GSA-AT)                |
|     |           |                                                                                                                                 |
| 210 | 5.2.1.8   | FKBP-type peptidyl-prolyl cis-trans isomerase SlyD (PPlase) (EC 5.2.1.8) (Metallochaperone SlyD)                                |
|     |           |                                                                                                                                 |
|     |           | UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronate 2-epimerase (UDP-alpha-D-GlcNAc3NAcA 2-epimerase) (EC 5.1.3.23) (UDP-2,3-         |
| 211 | 5.1.3.23  | diacetamido-2,3-dideoxy-alpha-D-glucuronic acid 2-epimerase)                                                                    |

|     | 1         |                                                                                                                                                                                                                             |
|-----|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 212 | 5.4.2.2   | Phosphoglucomutase (PGM) (EC 5.4.2.2) (Alpha-phosphoglucomutase) (Glucose phosphomutase)                                                                                                                                    |
| 213 | 5.1.3.2   | UDP-glucose 4-epimerase (EC 5.1.3.2) (UDP-galactose 4-epimerase) (Uridine diphosphate galactose 4-epimerase)                                                                                                                |
| 214 | 5.4.2.11  | 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (BPG-dependent PGAM) (PGAM) (Phosphoglyceromutase) (dPGM) (EC 5.4.2.11)                                                                                           |
| 215 | 5.3.1.1   | Triosephosphate isomerase (TIM) (EC 5.3.1.1) (Triose-phosphate isomerase)                                                                                                                                                   |
| 216 | 5.1.3.1   | Ribulose-phosphate 3-epimerase (EC 5.1.3.1) (Pentose-5-phosphate 3-epimerase) (PPE) (R5P3E)                                                                                                                                 |
| 217 | 5.4.99.9  | UDP-galactopyranose mutase (UGM) (EC 5.4.99.9) (UDP-GALP mutase) (Uridine 5-diphosphate galactopyranose mutase)                                                                                                             |
| 218 | 5.1.3.13  | dTDP-4-dehydrorhamnose 3,5-epimerase (EC 5.1.3.13) (Thymidine diphospho-4-keto-rhamnose 3,5-epimerase) (dTDP-4-keto-6-deoxyglucose 3,5-epimerase) (dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase) (dTDP-L-rhamnose synthase) |
| 219 | 5.1.3.20  | ADP-L-glycero-D-manno-heptose-6-epimerase (EC 5.1.3.20) (ADP-L-glycero-beta-D-manno-heptose-6-epimerase) (ADP-glyceromanno-heptose 6-epimerase) (ADP-hep 6-epimerase) (AGME)                                                |
| 220 | 5.4.99.18 | N5-carboxyaminoimidazole ribonucleotide mutase (N5-CAIR mutase) (EC 5.4.99.18) (5-(carboxyamino)imidazole ribonucleotide mutase)                                                                                            |
| 221 | 5.1.3.4   | L-ribulose-5-phosphate 4-epimerase (EC 5.1.3.4) (Phosphoribulose isomerase)                                                                                                                                                 |
| 222 | 5.3.1.6   | Ribose-5-phosphate isomerase A (EC 5.3.1.6) (Phosphoriboisomerase A) (PRI)                                                                                                                                                  |
| 223 | 5.1.3.14  | UDP-N-acetylglucosamine 2-epimerase (EC 5.1.3.14) (Bacteriophage N4 adsorption protein C) (UDP-GlcNAc-2-epimerase)                                                                                                          |
| 224 | 5.1.1.3   | Glutamate racemase (EC 5.1.1.3)                                                                                                                                                                                             |
| 225 | 5.4.99.22 | Ribosomal large subunit pseudouridine synthase B (EC 5.4.99.22) (23S rRNA pseudouridine(2605) synthase) (rRNA pseudouridylate synthase B) (rRNA-uridine isomerase B)                                                        |

|     |           | tRNA pseudouridine synthase B (EC 5.4.99.25) (Protein p35) (tRNA pseudouridine(55) synthase) (Psi55 synthase) (tRNA          |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------|
| 226 | 5.4.99.25 | pseudouridylate synthase) (tRNA-uridine isomerase)                                                                           |
| 227 | 5.1.1.7   | Diaminopimelate epimerase (DAP epimerase) (EC 5.1.1.7)                                                                       |
|     | 5.3.1.5   | Xylose isomerase (EC 5.3.1.5)                                                                                                |
| 220 | 3.3.1.3   | Aylose isomerase (Le 5.5.1.5)                                                                                                |
|     |           | Ribosomal large subunit pseudouridine synthase D (EC 5.4.99.23) (23S rRNA pseudouridine(1911/1915/1917) synthase) (rRNA      |
| 229 | 5.4.99.23 | pseudouridylate synthase D) (rRNA-uridine isomerase D)                                                                       |
| _   | 5.1.1.8   | 4-hydroxyproline 2-epimerase (4Hyp 2-epimerase) (4HypE) (EC 5.1.1.8)                                                         |
| -   | 5.1.1.1   | Alanine racemase, catabolic (EC 5.1.1.1)                                                                                     |
| 231 | 3.1.1.1   | Alamine racemase, catabone (Le 3.1.1.1)                                                                                      |
| 232 | 5.4.4.3   | 3-hydroxylaminophenol mutase (3HAP mutase) (EC 5.4.4.3) (3-(hydroxyamino)phenol mutase)                                      |
|     | 5.3.1.14  | L-rhamnose isomerase (EC 5.3.1.14)                                                                                           |
| 233 | 3.3.1.14  | E manifose isomerase (Le 5.5.1.14)                                                                                           |
| 234 | 5.3.1.28  | Phosphoheptose isomerase (EC 5.3.1.28) (Sedoheptulose 7-phosphate isomerase)                                                 |
| 254 | 3.3.1.20  | Thosphoneptose isomerase (Le 3.3.1.20) (Seaoneptalose 7 phosphate isomerase)                                                 |
|     |           | Ribosomal large subunit pseudouridine synthase F (EC 5.4.99.21) (23S rRNA pseudouridine(2604) synthase) (rRNA                |
| 235 | 5.4.99.21 | pseudouridylate synthase F) (rRNA-uridine isomerase F)                                                                       |
|     | 5.4.1.3   | 2-methylfumaryl-CoA isomerase (EC 5.4.1.3)                                                                                   |
|     | 5.3.1.24  | N-(5'-phosphoribosyl)anthranilate isomerase (PRAI) (EC 5.3.1.24)                                                             |
| 237 | 3.3.1.21  | 14 (5 phosphorisos) i antinutinate isomerase (110 u) (20 sist212 i)                                                          |
|     |           | tRNA pseudouridine synthase A (EC 5.4.99.12) (tRNA pseudouridine(38-40) synthase) (tRNA pseudouridylate synthase I) (PSU-I)  |
| 238 | 5.4.99.12 | (tRNA-uridine isomerase I)                                                                                                   |
|     | 5.4.4.2   | Isochorismate synthase EntC (EC 5.4.4.2) (Isochorismate mutase)                                                              |
|     |           | Isopentenyl-diphosphate Delta-isomerase (IPP isomerase) (EC 5.3.3.2) (IPP:DMAPP isomerase) (Isopentenyl pyrophosphate        |
| 240 | 5.3.3.2   | isomerase)                                                                                                                   |
|     | 5.4.3.2   | L-lysine 2,3-aminomutase (LAM) (EC 5.4.3.2) (KAM)                                                                            |
| _   | 5.1.1.20  | L-Ala-D/L-Glu epimerase (AE epimerase) (AEE) (EC 5.1.1.20)                                                                   |
|     |           |                                                                                                                              |
| 243 | 5.4.99.20 | Ribosomal large subunit pseudouridine synthase E (EC 5.4.99.20) (rRNA pseudouridylate synthase E) (rRNA-uridine isomerase E) |
|     |           |                                                                                                                              |
| 244 | 5.3.1.17  | 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase (EC 5.3.1.17) (5-keto-4-deoxyuronate isomerase) (DKI isomerase)         |

|     | I                |                                                                                                                                                                                                                               |
|-----|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 245 | 5.4.99.19        | Ribosomal small subunit pseudouridine synthase A (EC 5.4.99.19) (16S pseudouridylate 516 synthase) (16S rRNA pseudouridylate synthase A) (rRNA-uridine isomerase A)                                                           |
| 246 | 5.3.2.5          | 2,3-diketo-5-methylthiopentyl-1-phosphate enolase (DK-MTP-1-P enolase) (EC 5.3.2.5) (RuBisCO-like protein) (RLP)                                                                                                              |
| -   |                  | 1,2-epoxyphenylacetyl-CoA isomerase (EC 5.3.3.18)                                                                                                                                                                             |
| 247 | 3.3.3.10         | 1,2-epoxyphenylacetyl-cox isomerase (EC 3.3.3.16)                                                                                                                                                                             |
| 248 | 5.4.99.26        | tRNA pseudouridine synthase C (EC 5.4.99.26) (tRNA pseudouridine(65) synthase) (tRNA pseudouridylate synthase C) (tRNA-uridine isomerase C)                                                                                   |
| 249 | 5.3.1.8          | Probable mannose-6-phosphate isomerase GmuF (EC 5.3.1.8) (Glucomannan utilization protein F) (Phosphohexomutase) (Phosphomannose isomerase) (PMI)                                                                             |
| 250 | 5.1.3.25         | dTDP-L-rhamnose 4-epimerase (EC 5.1.3.25)                                                                                                                                                                                     |
|     |                  |                                                                                                                                                                                                                               |
| Row | <b>EC</b> number | Ligase name                                                                                                                                                                                                                   |
|     |                  |                                                                                                                                                                                                                               |
| 251 | 6.3.5.2          | GMP synthase [glutamine-hydrolyzing] (EC 6.3.5.2) (GMP synthetase) (GMPS) (Glutamine amidotransferase)                                                                                                                        |
|     |                  |                                                                                                                                                                                                                               |
|     |                  |                                                                                                                                                                                                                               |
|     |                  | Phosphoribosylformylglycinamidine synthase subunit PurL (FGAM synthase) (EC 6.3.5.3) (Formylglycinamide ribonucleotide amidotransferase subunit II) (FGAR amidotransferase II) (FGAR-AT II) (Glutamine amidotransferase PurL) |
| 252 | 6.3.5.3          | (Phosphoribosylformylglycinamidine synthase subunit II)                                                                                                                                                                       |
|     |                  |                                                                                                                                                                                                                               |
| 253 | 6.2.1.1          | Acetyl-coenzyme A synthetase (AcCoA synthetase) (Acs) (EC 6.2.1.1) (AcetateCoA ligase) (Acyl-activating enzyme)                                                                                                               |
| 254 | 6.4.1.1          | PycA pyruvate carboxylase subunit A                                                                                                                                                                                           |
|     |                  |                                                                                                                                                                                                                               |
| 255 | 6.2.1.5          | Succinyl-CoA ligase [ADP-forming] subunit beta (EC 6.2.1.5) (Succinyl-CoA synthetase subunit beta) (SCS-beta)                                                                                                                 |
|     |                  |                                                                                                                                                                                                                               |
|     |                  | Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta (ACCase subunit beta) (Acetyl-CoA carboxylase                                                                                                                 |
| 256 | 6.4.1.2          | carboxyltransferase subunit beta) (EC 6.4.1.2)                                                                                                                                                                                |
|     |                  | LysinetRNA ligase (EC 6.1.1.6) (Lysyl-tRNA synthetase) (LysRS)                                                                                                                                                                |
|     | 6.1.1.7          | AlaninetRNA ligase (EC 6.1.1.7) (Alanyl-tRNA synthetase) (AlaRS)                                                                                                                                                              |
|     | l                | U (                                                                                                                                                                                                                           |

| 259 | 6.3.5.7  | Glutamyl-tRNA(Gln) amidotransferase subunit A (Glu-ADT subunit A) (EC 6.3.5.7)                                               |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------|
| 260 | 6.4.1.3  | Probable propionyl-CoA carboxylase beta chain 5 (PCCase) (EC 6.4.1.3) (Propanoyl-CoA:carbon dioxide ligase)                  |
| 261 | 6.1.1.10 | MethioninetRNA ligase (EC 6.1.1.10) (Methionyl-tRNA synthetase) (MetRS)                                                      |
| 262 | 6.1.1.3  | ThreoninetRNA ligase (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS)                                                         |
| 263 | 6.5.1.2  | DNA ligase A (EC 6.5.1.2) (Polydeoxyribonucleotide synthase [NAD(+)])                                                        |
| 264 | 6.1.1.11 | SerinetRNA ligase (EC 6.1.1.11) (Seryl-tRNA synthetase) (SerRS) (Seryl-tRNA(Ser/Sec) synthetase)                             |
| 265 | 6.1.1.18 | GlutaminetRNA ligase (EC 6.1.1.18) (Glutaminyl-tRNA synthetase) (GlnRS)                                                      |
|     |          |                                                                                                                              |
| 266 | 6.3.4.4  | Adenylosuccinate synthetase (AMPSase) (AdSS) (EC 6.3.4.4) (IMPaspartate ligase)                                              |
| 267 | 6.1.1.17 | GlutamatetRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS)                                                        |
| 268 | 6.1.1.20 | PhenylalaninetRNA ligase alpha subunit (EC 6.1.1.20) (Phenylalanyl-tRNA synthetase alpha subunit) (PheRS)                    |
| 269 | 6.3.4.5  | Argininosuccinate synthase (EC 6.3.4.5) (Citrullineaspartate ligase)                                                         |
| 270 | 6.5.1.1  | DNA ligase C1 (EC 6.5.1.1) (Polydeoxyribonucleotide synthase [ATP])                                                          |
| 271 | 6.1.1.2  | TryptophantRNA ligase (EC 6.1.1.2) (Tryptophanyl-tRNA synthetase) (TrpRS)                                                    |
|     |          | AspartatetRNA(Asp/Asn) ligase (EC 6.1.1.23) (Aspartyl-tRNA synthetase) (AspRS) (Non-discriminating aspartyl-tRNA synthetase) |
| 272 |          | (ND-AspRS)                                                                                                                   |
| 273 | 6.1.1.1  | TyrosinetRNA ligase (EC 6.1.1.1) (Tyrosyl-tRNA synthetase) (TyrRS)                                                           |
| 274 | 6.3.1.2  | Glutamine synthetase (EC 6.3.1.2) (Glutamateammonia ligase)                                                                  |
| 275 | 6.1.1.5  | IsoleucinetRNA ligase (EC 6.1.1.5) (Isoleucyl-tRNA synthetase) (IleRS)                                                       |
| 276 | 6.3.5.5  | Carbamoyl-phosphate synthase small chain (EC 6.3.5.5) (Carbamoyl-phosphate synthetase glutamine chain)                       |
| 277 | 6.3.2.1  | Pantothenate synthetase (PS) (EC 6.3.2.1) (Pantoatebeta-alanine ligase) (Pantoate-activating enzyme)                         |

| 278 | 6.3.2.n2 | Pupprotein ligase (EC 6.3.2.n2) (Proteasome accessory factor A) (Pup-conjugating enzyme)                                    |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------|
| 279 | 6.2.1.3  | Long-chain-fatty-acidCoA ligase FadD15 (FACL) (EC 6.2.1.3) (Acyl-CoA synthetase)                                            |
|     |          |                                                                                                                             |
|     |          | UDP-N-acetylmuramateL-alanyl-gamma-D-glutamyl-meso-2,6-diaminoheptandioate ligase (EC 6.3.2.45) (Murein peptide ligase)     |
| 280 | 6.3.2.45 | (UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase)                                                |
| 281 | 6.1.1.15 | ProlinetRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase) (ProRS)                                                           |
|     |          |                                                                                                                             |
| 282 | 6.3.2.8  | UDP-N-acetylmuramateL-alanine ligase (EC 6.3.2.8) (UDP-N-acetylmuramoyl-L-alanine synthetase)                               |
|     |          |                                                                                                                             |
| 283 | 6.2.1.30 | Phenylacetate-coenzyme A ligase (EC 6.2.1.30) (Phenylacetyl-CoA ligase) (PA-CoA ligase)                                     |
|     |          |                                                                                                                             |
| 284 | 6.3.2.4  | D-alanineD-alanine ligase B (EC 6.3.2.4) (D-Ala-D-Ala ligase B) (D-alanylalanine synthetase B)                              |
| 285 | 6.3.5.4  | Asparagine synthetase B [glutamine-hydrolyzing] (AS-B) (EC 6.3.5.4)                                                         |
|     |          | N5-carboxyaminoimidazole ribonucleotide synthase (N5-CAIR synthase) (EC 6.3.4.18) (5-(carboxyamino)imidazole ribonucleotide |
|     | 6.3.4.18 | synthetase)                                                                                                                 |
| 287 | 6.1.1.19 | ArgininetRNA ligase (EC 6.1.1.19) (Arginyl-tRNA synthetase) (ArgRS)                                                         |
| 288 | 6.3.1.1  | Aspartateammonia ligase (EC 6.3.1.1) (Asparagine synthetase A)                                                              |
|     |          |                                                                                                                             |
|     |          |                                                                                                                             |
|     |          | UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-diaminopimelate ligase (EC 6.3.2.13) (Meso-A2pm-adding enzyme) (Meso-          |
| 200 | 60040    | diaminopimelate-adding enzyme) (UDP-MurNAc-L-Ala-D-Glu:meso-diaminopimelate ligase) (UDP-MurNAc-tripeptide synthetase)      |
| -   | 6.3.2.13 | (UDP-N-acetylmuramyl-tripeptide synthetase)                                                                                 |
| 290 | 6.4.1.6  | Acetone carboxylase gamma subunit (EC 6.4.1.6)                                                                              |
| 291 | 6.6.1.1  | Magnesium-chelatase 38 kDa subunit (EC 6.6.1.1) (Mg-protoporphyrin IX chelatase)                                            |
|     |          | , , , , , , , ,                                                                                                             |
| 292 | 6.3.2.43 | Alpha-aminoadipateLysW ligase LysX (AAALysW ligase LysX) (EC 6.3.2.43)                                                      |
| 293 | 6.1.1.12 | AspartatetRNA ligase (EC 6.1.1.12) (Aspartyl-tRNA synthetase) (AspRS)                                                       |
| 293 | 0.1.1.12 | ASPARTALELKINA ligase (EC 6.1.1.12) (ASPARTYI-TKINA SYNTNETASE) (ASPRS)                                                     |

| 294                                    | 6.3.2.9                                                            | UDP-N-acetylmuramoylalanineD-glutamate ligase (EC 6.3.2.9) (D-glutamic acid-adding enzyme) (UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 295                                    | 6.2.1.41                                                           | 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl:CoA ligase (HIP:CoA ligase) (EC 6.2.1.41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 296                                    | 6.3.2.3                                                            | Glutathione synthetase (EC 6.3.2.3) (GSH synthetase) (GSH-S) (GSHase) (Glutathione synthase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 297                                    | 6.2.1.44                                                           | 3-methylmercaptopropionyl-CoA ligase (MMPA-CoA ligase) (EC 6.2.1.44) (Acyl-CoA ligase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 208                                    | 6.3.4.21                                                           | Nicotinate phosphoribosyltransferase (NAPRTase) (EC 6.3.4.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 230                                    | 0.3.4.21                                                           | Nicotifiate phosphoribosyltialisterase (IVAFICTASE) (LC 0.5.4.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 299                                    | 6.3.2.10                                                           | UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase (EC 6.3.2.10) (D-alanyl-D-alanine-adding enzyme) (UDP-MurNAc-pentapeptide synthetase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                    | 7-cyano-7-deazaguanine synthase (EC 6.3.4.20) (7-cyano-7-carbaguanine synthase) (PreQ(0) synthase) (Queuosine biosynthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 300                                    | 6.3.4.20                                                           | protein QueC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 300                                    | 0.5. 1.20                                                          | protein queey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Row                                    | EC number                                                          | Enzyme name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Row                                    | EC number                                                          | Enzyme name  DNA-directed RNA polymerase subunit beta! (RNAP subunit beta!) (EC 2.7.7.6) (RNA polymerase subunit beta!) (Transcriptase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                                                    | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 301                                    | 2.7.7.6                                                            | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 301                                    |                                                                    | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 301                                    | 2.7.7.6                                                            | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 301                                    | 2.7.7.6<br>5.99.1.3                                                | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 301<br>302                             | 2.7.7.6<br>5.99.1.3                                                | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')  DNA gyrase subunit A (EC 5.99.1.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 301<br>302<br>303                      | 2.7.7.6<br>5.99.1.3<br>6.2.1.1                                     | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')  DNA gyrase subunit A (EC 5.99.1.3)  Acetyl-coenzyme A synthetase (AcCoA synthetase) (Acs) (EC 6.2.1.1) (AcetateCoA ligase) (Acyl-activating enzyme)                                                                                                                                                                                                                                                                                                                                                                                                 |
| 301<br>302<br>303<br>304               | 2.7.7.6<br>5.99.1.3<br>6.2.1.1<br>2.7.11.1                         | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')  DNA gyrase subunit A (EC 5.99.1.3)  Acetyl-coenzyme A synthetase (AcCoA synthetase) (Acs) (EC 6.2.1.1) (AcetateCoA ligase) (Acyl-activating enzyme)  Serine/threonine-protein kinase PknA (EC 2.7.11.1)                                                                                                                                                                                                                                                                                                                                             |
| 301<br>302<br>303<br>304               | 2.7.7.6<br>5.99.1.3<br>6.2.1.1                                     | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')  DNA gyrase subunit A (EC 5.99.1.3)  Acetyl-coenzyme A synthetase (AcCoA synthetase) (Acs) (EC 6.2.1.1) (AcetateCoA ligase) (Acyl-activating enzyme)                                                                                                                                                                                                                                                                                                                                                                                                 |
| 301<br>302<br>303<br>304<br>305        | 2.7.7.6<br>5.99.1.3<br>6.2.1.1<br>2.7.11.1                         | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')  DNA gyrase subunit A (EC 5.99.1.3)  Acetyl-coenzyme A synthetase (AcCoA synthetase) (Acs) (EC 6.2.1.1) (AcetateCoA ligase) (Acyl-activating enzyme)  Serine/threonine-protein kinase PknA (EC 2.7.11.1)                                                                                                                                                                                                                                                                                                                                             |
| 301<br>302<br>303<br>304<br>305        | 2.7.7.6<br>5.99.1.3<br>6.2.1.1<br>2.7.11.1<br>3.6.3.14             | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')  DNA gyrase subunit A (EC 5.99.1.3)  Acetyl-coenzyme A synthetase (AcCoA synthetase) (Acs) (EC 6.2.1.1) (AcetateCoA ligase) (Acyl-activating enzyme)  Serine/threonine-protein kinase PknA (EC 2.7.11.1)  ATP synthase subunit alpha (EC 3.6.3.14) (ATP synthase F1 sector subunit alpha) (F-ATPase subunit alpha)                                                                                                                                                                                                                                   |
| 301<br>302<br>303<br>304<br>305        | 2.7.7.6<br>5.99.1.3<br>6.2.1.1<br>2.7.11.1<br>3.6.3.14             | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')  DNA gyrase subunit A (EC 5.99.1.3)  Acetyl-coenzyme A synthetase (AcCoA synthetase) (Acs) (EC 6.2.1.1) (AcetateCoA ligase) (Acyl-activating enzyme)  Serine/threonine-protein kinase PknA (EC 2.7.11.1)  ATP synthase subunit alpha (EC 3.6.3.14) (ATP synthase F1 sector subunit alpha) (F-ATPase subunit alpha)                                                                                                                                                                                                                                   |
| 301<br>302<br>303<br>304<br>305<br>306 | 2.7.7.6<br>5.99.1.3<br>6.2.1.1<br>2.7.11.1<br>3.6.3.14             | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')  DNA gyrase subunit A (EC 5.99.1.3)  Acetyl-coenzyme A synthetase (AcCoA synthetase) (Acs) (EC 6.2.1.1) (AcetateCoA ligase) (Acyl-activating enzyme)  Serine/threonine-protein kinase PknA (EC 2.7.11.1)  ATP synthase subunit alpha (EC 3.6.3.14) (ATP synthase F1 sector subunit alpha) (F-ATPase subunit alpha)  ATP-dependent helicase/deoxyribonuclease subunit B (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease RexB)                                                                                                                 |
| 301<br>302<br>303<br>304<br>305<br>306 | 2.7.7.6<br>5.99.1.3<br>6.2.1.1<br>2.7.11.1<br>3.6.3.14<br>3.6.4.12 | DNA-directed RNA polymerase subunit beta' (RNAP subunit beta') (EC 2.7.7.6) (RNA polymerase subunit beta') (Transcriptase subunit beta')  DNA gyrase subunit A (EC 5.99.1.3)  Acetyl-coenzyme A synthetase (AcCoA synthetase) (Acs) (EC 6.2.1.1) (AcetateCoA ligase) (Acyl-activating enzyme)  Serine/threonine-protein kinase PknA (EC 2.7.11.1)  ATP synthase subunit alpha (EC 3.6.3.14) (ATP synthase F1 sector subunit alpha) (F-ATPase subunit alpha)  ATP-dependent helicase/deoxyribonuclease subunit B (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease RexB)  Putative K(+)-stimulated pyrophosphate-energized sodium pump (EC 3.6.1.1) (Membrane-bound sodium-translocating |

| 309  | 1.18.6.1  | nifH Fe protein of nitrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 310  | 3.6.5.n1  | Elongation factor 4 (EF-4) (EC 3.6.5.n1) (Ribosomal back-translocase LepA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 1.11.1.21 | Catalase-peroxidase (CP) (EC 1.11.1.21) (Hydroperoxidase I) (HPI) (Peroxidase/catalase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -    | 1.8.1.19  | SudB Sulfide dehydrogenase subunit beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 313  | 3.6.4.13  | Probable ATP-dependent RNA helicase YfmL (EC 3.6.4.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 3.4.21.53 | Lon protease (EC 3.4.21.53) (ATP-dependent protease La)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 315  | 2.7.13.3  | Signal-transduction histidine kinase senX3 (EC 2.7.13.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 246  | 4242      | Aconitate hydratase A (ACN) (Aconitase) (EC 4.2.1.3) (Iron-responsive protein-like) (IRP-like) (RNA-binding protein) (Stationary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 316  | 4.2.1.3   | phase enzyme)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.1- |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 4.2.1.11  | Enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (2-phosphoglycerate dehydratase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 318  |           | Ferredoxin-dependent glutamate synthase 2 (EC 1.4.7.1) (FD-GOGAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -    | 4.2.1.46  | dTDP-glucose 4,6-dehydratase (EC 4.2.1.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 320  | 6.4.1.1   | PycA pyruvate carboxylase subunit A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |           | Methionine synthase (EC 2.1.1.13) (5-methyltetrahydrofolatehomocysteine methyltransferase) (Methionine synthase, vitamin-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 321  | 2.1.1.13  | B12-dependent) (MS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 322  | 6.2.1.5   | Succinyl-CoA ligase [ADP-forming] subunit beta (EC 6.2.1.5) (Succinyl-CoA synthetase subunit beta) (SCS-beta)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 2.7.7.8   | Polyribonucleotide nucleotidyltransferase (EC 2.7.7.8) (Polynucleotide phosphorylase) (PNPase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 324  | 2.3.1.54  | Formate acetyltransferase 1 (EC 2.3.1.54) (Pyruvate formate-lyase 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 225  | 44430     | Pile less bisches de la collecte de |
|      | 4.1.1.39  | Ribulose bisphosphate carboxylase large chain (RuBisCO large subunit) (EC 4.1.1.39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 326  | 1.2.7.3   | Gapor Gor Glyceraldehyde-3-phosphate:ferredoxin oxidoreductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 227  | 2516      | S adapas denos describas a (AdaMat synthasa) (FC 2 F 1 6) (MAT) (Mathianina adapas denos de del denos de del de del denos de del del del del del del del del del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32/  | 2.5.1.6   | S-adenosylmethionine synthase (AdoMet synthase) (EC 2.5.1.6) (MAT) (Methionine adenosyltransferase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|     |           | NAD(P) transhydrogenase subunit alpha (EC 1.6.1.2) (Nicotinamide nucleotide transhydrogenase subunit alpha) (Pyridine                                                       |
|-----|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 328 | 1.6.1.2   | nucleotide transhydrogenase subunit alpha (Le 1.0.1.2) (Nicotinamide nucleotide transhydrogenase subunit alpha)                                                             |
|     | -         |                                                                                                                                                                             |
|     |           |                                                                                                                                                                             |
|     |           | Potassium-transporting ATPase ATP-binding subunit (EC 3.6.3.12) (ATP phosphohydrolase [potassium-transporting] B chain)                                                     |
| 329 | 3.6.3.12  | (Potassium-binding and translocating subunit B) (Potassium-translocating ATPase B chain)                                                                                    |
| 220 | 3.3.1.1   | Adenosylhomocysteinase (EC 3.3.1.1) (S-adenosyl-L-homocysteine hydrolase) (AdoHcyase)                                                                                       |
| 330 | 3.3.1.1   | Adenosymomocystemase (EC 3.3.1.1) (3-adenosyi-t-nomocysteme mydrolase) (Adoncyase)                                                                                          |
| 331 | 2.3.1.41  | Phenolphthiocerol synthesis polyketide synthase type I Pks15/1 (Beta-ketoacyl-acyl-carrier-protein synthase I) (EC 2.3.1.41)                                                |
|     |           |                                                                                                                                                                             |
|     |           |                                                                                                                                                                             |
|     |           | Phosphomethylpyrimidine synthase (EC 4.1.99.17) (Hydroxymethylpyrimidine phosphate synthase) (HMP-P synthase) (HMP-P                                                        |
| 332 | 4.1.99.17 | phosphate synthase) (HMPP synthase) (Thiamine biosynthesis protein ThiC)                                                                                                    |
| 333 | 6.3.5.2   | CMD synthass (glytamine hydrolyzing) (EC.6.2.E.2) (CMD synthatase) (CMDS) (Clytamine amidetransferase)                                                                      |
| 334 | 1.2.4.1   | GMP synthase [glutamine-hydrolyzing] (EC 6.3.5.2) (GMP synthetase) (GMPS) (Glutamine amidotransferase)  Pyruvate dehydrogenase E1 component (PDH E1 component) (EC 1.2.4.1) |
| 334 | 1.2.4.1   | Pyruvate denydrogenase E1 Component (PDH E1 Component) (EC 1.2.4.1)                                                                                                         |
|     |           |                                                                                                                                                                             |
|     |           | Phosphoribosylformylglycinamidine synthase subunit PurL (FGAM synthase) (EC 6.3.5.3) (Formylglycinamide ribonucleotide                                                      |
|     |           | amidotransferase subunit II) (FGAR amidotransferase II) (FGAR-AT II) (Glutamine amidotransferase PurL)                                                                      |
| 335 | 6.3.5.3   | (Phosphoribosylformylglycinamidine synthase subunit II)                                                                                                                     |
|     |           |                                                                                                                                                                             |
| 336 | 1.8.5.4   | Sulfide-quinone reductase (SQR) (EC 1.8.5.4) (Sulfide:quinone oxidoreductase)                                                                                               |
|     |           |                                                                                                                                                                             |
|     | 1.1.1.22  | UDP-glucose 6-dehydrogenase YwqF (UDP-Glc dehydrogenase) (UDP-GlcDH) (UDPGDH) (EC 1.1.1.22)                                                                                 |
| 338 | 2.7.7.7   | pol DNA polymerase, archaea type                                                                                                                                            |

|     |           | Cytochrome bo(3) ubiquinol oxidase subunit 1 (EC 1.10.3.10) (Cytochrome b562-o complex subunit I) (Cytochrome o ubiquinol oxidase subunit 1) (Cytochrome o subunit 1) (Oxidase bo(3) subunit 1) (Ubiquinol oxidase chain A) (Ubiquinol oxidase polypeptide |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 339 | 1.10.3.10 | I) (Ubiquinol oxidase subunit 1)                                                                                                                                                                                                                           |
|     |           |                                                                                                                                                                                                                                                            |
| 340 | 5.99.1.2  | DNA topoisomerase 1 (EC 5.99.1.2) (DNA topoisomerase I) (Omega-protein) (Relaxing enzyme) (Swivelase) (Untwisting enzyme)                                                                                                                                  |
|     |           |                                                                                                                                                                                                                                                            |
| 341 | 2.7.9.2   | Phosphoenolpyruvate synthase (PEP synthase) (EC 2.7.9.2) (Pyruvate, water dikinase)                                                                                                                                                                        |
| 342 | 5.4.99.2  | Methylmalonyl-CoA mutase (MCM) (EC 5.4.99.2)                                                                                                                                                                                                               |
|     |           |                                                                                                                                                                                                                                                            |
| 343 | 4.2.1.47  | GDP-mannose 4,6-dehydratase (EC 4.2.1.47) (GDP-D-mannose dehydratase)                                                                                                                                                                                      |
|     |           |                                                                                                                                                                                                                                                            |
|     |           |                                                                                                                                                                                                                                                            |
|     |           | Glutaminefructose-6-phosphate aminotransferase [isomerizing] (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase) (GFAT) (Glucosamine-6-phosphate synthase) (Hexosephosphate aminotransferase) (L-glutamineD-fructose-6-phosphate                       |
| 344 | 2.6.1.16  | amidotransferase)                                                                                                                                                                                                                                          |
|     |           | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                      |
| 345 | 2.6.1.83  | LL-diaminopimelate aminotransferase (DAP-AT) (DAP-aminotransferase) (LL-DAP-aminotransferase) (EC 2.6.1.83)                                                                                                                                                |
|     |           |                                                                                                                                                                                                                                                            |
|     |           | 3-oxoacyl-[acyl-carrier-protein] reductase FabG (EC 1.1.1.100) (3-ketoacyl-acyl carrier protein reductase) (Beta-Ketoacyl-acyl                                                                                                                             |
| 346 | 1.1.1.100 | carrier protein reductase) (Beta-ketoacyl-ACP reductase)                                                                                                                                                                                                   |
| 347 | 1.11.1.6  | Catalase (EC 1.11.1.6)                                                                                                                                                                                                                                     |
| 348 | 2.1.2.1   | Serine hydroxymethyltransferase (SHMT) (Serine methylase) (EC 2.1.2.1)                                                                                                                                                                                     |
| 349 | 2.7.2.3   | Phosphoglycerate kinase (EC 2.7.2.3)                                                                                                                                                                                                                       |
| 350 | 6.1.1.6   | LysinetRNA ligase (EC 6.1.1.6) (Lysyl-tRNA synthetase) (LysRS)                                                                                                                                                                                             |

Table S4

Top 100 oxidoreductase genes by biomes, averaged across corresponding metagenomes.

| Animal associated (44 metagenomes) |                              |           |                                                    |
|------------------------------------|------------------------------|-----------|----------------------------------------------------|
| row                                | Avg.rank                     | EC number | Oxidoreductase                                     |
| 1                                  | 7.00 ± 13.38                 | 1.17.4.2  | Ribonucleoside-triphosphate reductase              |
| 2                                  | 7.00 ± 13.38<br>7.02 ± 16.04 | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating)     |
| 3                                  | 10.25 ± 9.24                 | 1.17.4.1  | Ribonucleoside-diphosphate reductase               |
| 4                                  | 14.07 ± 17.36                | 1.17.4.1  | [Formate-C-acetyltransferase]-activating enzyme    |
| 5                                  | 14.89 ± 11.42                | 1.1.1.205 | IMP dehydrogenase                                  |
| 6                                  | 14.98 ± 13.45                | 1.3.99.22 | Coproporphyrinogen dehydrogenase                   |
| 7                                  | 15.70 ± 11.32                | 1.1.1.1   | Alcohol dehydrogenase                              |
| 8                                  | 16.20 ± 8.72                 | 1.1.1.3   | Homoserine dehydrogenase                           |
| 9                                  | 16.30 ± 32.02                | 1.2.7.1   | Pyruvate synthase                                  |
| 10                                 | 16.59 ± 20.72                | 1.4.1.4   | Glutamate dehydrogenase (NADP(+))                  |
| 11                                 | 16.98 ± 29.59                | 1.4.1.13  | Glutamate synthase (NADPH)                         |
| 12                                 | 18.41 ± 11.54                | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase         |
| 13                                 | 19.36 ± 18.19                | 1.3.5.1   | Succinate dehydrogenase (quinone)                  |
| 14                                 | 22.77 ± 16.48                | 1.8.1.9   | Thioredoxin-disulfide reductase                    |
| 15                                 | 28.50 ± 14.82                | 1.1.1.95  | Phosphoglycerate dehydrogenase                     |
|                                    |                              |           | Glyceraldehyde-3-phosphate dehydrogenase           |
| 16                                 | 28.52 ± 15.79                | 1.2.1.12  | (phosphorylating)                                  |
|                                    |                              |           | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate       |
| 17                                 | 30.50 ± 26.60                | 1.17.7.1  | synthase (ferredoxin)                              |
| 18                                 | 32.14 ± 12.93                | 1.2.1.11  | Aspartate-semialdehyde dehydrogenase               |
| 19                                 | 32.98 ± 42.66                | 1.2.7.3   | 2-oxoglutarate synthase                            |
| 20                                 | 34.11 ± 26.78                | 1.1.1.22  | UDP-glucose 6-dehydrogenase                        |
| 21                                 | 36.42 ± 18.46                | 1.17.1.2  | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
| 22                                 | 38.32 ± 19.31                | 1.2.1.41  | Glutamate-5-semialdehyde dehydrogenase             |
| 23                                 | 39.52 ± 17.45                | 1.3.1.98  | UDP-N-acetylmuramate dehydrogenase                 |
| 24                                 | 39.93 ± 24.04                | 1.1.1.267 | 1-deoxy-D-xylulose-5-phosphate reductoisomerase    |
| 25                                 | 40.16 ± 28.37                | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)   |
| 26                                 | 40.75 ± 24.36                | 1.8.1.4   | Dihydrolipoyl dehydrogenase                        |
| 27                                 | 40.84 ± 17.60                | 1.1.1.86  | Ketol-acid reductoisomerase (NADP(+))              |
| 28                                 | 41.05 ± 23.03                | 1.1.5.3   | Glycerol-3-phosphate dehydrogenase                 |
| 29                                 | 42.30 ± 38.72                | 1.7.99.1  | Hydroxylamine reductase                            |
| 30                                 | 42.45 ± 17.98                | 1.1.1.94  | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))     |
| 31                                 | 42.64 ± 31.41                | 1.1.1.133 | dTDP-4-dehydrorhamnose reductase                   |
| 32                                 | 44.05 ± 16.03                | 1.1.1.85  | 3-isopropylmalate dehydrogenase                    |
| 33                                 | 44.14 ± 19.39                | 1.1.1.25  | Shikimate dehydrogenase                            |
| 34                                 | 47.59 ± 26.82                | 1.1.1.23  | Histidinol dehydrogenase                           |

| 35 | 47.70 ± 20.83 | 1.5.1.5   | Methylenetetrahydrofolate dehydrogenase (NADP(+))   |
|----|---------------|-----------|-----------------------------------------------------|
| 36 | 47.77 ± 36.83 | 1.4.3.16  | L-aspartate oxidase                                 |
| 37 | 48.84 ± 52.25 | 1.4.7.1   | Glutamate synthase (ferredoxin)                     |
| 38 | 49.07 ± 20.53 | 1.1.1.193 | 5-amino-6-(5-phosphoribosylamino)uracil reductase   |
| 39 | 51.39 ± 24.41 | 1.11.1.15 | Peroxiredoxin                                       |
| 40 | 52.16 ± 23.85 | 1.17.1.8  | 4-hydroxy-tetrahydrodipicolinate reductase          |
| 41 | 52.84 ± 31.20 | 1.1.1.42  | Isocitrate dehydrogenase (NADP(+))                  |
| 42 | 53.48 ± 35.88 | 1.3.5.4   | Fumarate reductase (quinol)                         |
| 43 | 54.00 ± 26.07 | 1.1.1.38  | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 44 | 56.49 ± 14.80 | 1.3.1.12  | Prephenate dehydrogenase                            |
| 45 | 56.55 ± 26.54 | 1.5.1.20  | Methylenetetrahydrofolate reductase (NAD(P)H)       |
| 46 | 57.86 ± 28.51 | 1.3.1.14  | Dihydroorotate dehydrogenase (NAD(+))               |
| 47 | 58.40 ± 33.51 | 1.2.1.38  | N-acetyl-gamma-glutamyl-phosphate reductase         |
|    |               |           | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 48 | 58.67 ± 35.90 | 1.1.1.40  | (NADP(+))                                           |
| 49 | 59.79 ± 35.22 | 1.8.1.8   | Protein-disulfide reductase                         |
| 50 | 61.36 ± 71.38 | 1.12.7.2  | Ferredoxin hydrogenase                              |
| 51 | 63.68 ± 21.75 | 1.5.1.2   | Pyrroline-5-carboxylate reductase                   |
|    |               |           | Saccharopine dehydrogenase (NAD(+), L-lysine-       |
| 52 | 63.70 ± 46.08 | 1.5.1.7   | forming)                                            |
| 53 | 64.11 ± 29.02 | 1.2.1.2   | Formate dehydrogenase                               |
| 54 | 64.57 ± 31.32 | 1.1.1.27  | L-lactate dehydrogenase                             |
| 55 | 66.26 ± 43.51 | 1.1.1.77  | Lactaldehyde reductase                              |
| 56 | 67.16 ± 36.16 | 1.3.1.9   | Enoyl-[acyl-carrier-protein] reductase (NADH)       |
| 57 | 69.00 ± 34.11 | 1.1.1.37  | Malate dehydrogenase                                |
| 58 | 70.95 ± 32.47 | 1.8.4.11  | Peptide-methionine (S)-S-oxide reductase            |
| 59 | 72.00 ± 66.57 | 1.2.7.8   | Indolepyruvate ferredoxin oxidoreductase            |
| 60 | 72.41 ± 32.93 | 1.1.1.29  | Glycerate dehydrogenase                             |
| 61 | 72.77 ± 30.43 | 1.18.1.2  | FerredoxinNADP(+) reductase                         |
|    |               |           | Phosphogluconate dehydrogenase (NAD(+)-             |
| 62 | 72.77 ± 41.72 | 1.1.1.343 | dependent, decarboxylating)                         |
| 63 | 73.77 ± 36.14 | 1.1.1.169 | 2-dehydropantoate 2-reductase                       |
| 64 | 76.66 ± 27.12 | 1.1.1.28  | D-lactate dehydrogenase                             |
| 65 | 77.14 ± 46.68 | 1.2.1.88  | L-glutamate gamma-semialdehyde dehydrogenase        |
| 66 | 77.53 ± 48.81 | 1.1.1.49  | Glucose-6-phosphate dehydrogenase (NADP(+))         |
|    |               |           | 2,5-didehydrogluconate reductase (2-dehydro-L-      |
| 67 | 77.77 ± 24.37 | 1.1.1.346 | gulonate-forming)                                   |
| 68 | 78.43 ± 27.96 | 1.4.1.16  | Diaminopimelate dehydrogenase                       |
| 69 | 79.50 ± 20.08 | 1.5.1.3   | Dihydrofolate reductase                             |
| 70 | 81.37 ± 51.60 | 1.3.8.1   | Short-chain acyl-CoA dehydrogenase                  |
| 71 | 81.49 ± 30.43 | 1.1.1.262 | 4-hydroxythreonine-4-phosphate dehydrogenase        |
| 72 | 84.80 ± 51.68 | 1.17.1.4  | Xanthine dehydrogenase                              |
| 73 | 85.40 ± 54.90 | 1.1.1.14  | L-iditol 2-dehydrogenase                            |
|    |               |           | · -                                                 |

| 74  | 86.41 ± 24.76  | 1.4.1.1    | Alanine dehydrogenase                              |
|-----|----------------|------------|----------------------------------------------------|
| 75  | 89.59 ± 34.30  | 1.97.1.9   | Selenate reductase                                 |
| 76  | 89.60 ± 31.66  | 1.15.1.1   | Superoxide dismutase                               |
| 77  | 90.62 ± 57.86  | 1.12.1.3   | Hydrogen dehydrogenase (NADP(+))                   |
| 78  | 90.68 ± 50.50  | 1.1.1.57   | Fructuronate reductase                             |
| 79  | 91.02 ± 65.74  | 1.1.1.58   | Tagaturonate reductase                             |
| 80  | 91.28 ± 55.58  | 1.3.1.34   | 2,4-dienoyl-CoA reductase (NADPH)                  |
| 81  | 92.00 ± 50.34  | 1.1.1.271  | GDP-L-fucose synthase                              |
| 82  | 92.17 ± 43.91  | 1.1.1.69   | Gluconate 5-dehydrogenase                          |
| 83  | 94.02 ± 32.47  | 1.2.1.3    | Aldehyde dehydrogenase (NAD(+))                    |
|     |                |            | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si- |
| 84  | 95.11 ± 41.34  | 1.3.1.10   | specific)                                          |
| 85  | 95.51 ± 51.94  | 1.5.3.1    | Sarcosine oxidase                                  |
| 86  | 95.86 ± 31.23  | 1.2.1.70   | Glutamyl-tRNA reductase                            |
| 87  | 95.95 ± 31.67  | 1.20.4.1   | Arsenate reductase (glutaredoxin)                  |
| 88  | 97.35 ± 25.11  | 1.7.1.13   | PreQ(1) synthase                                   |
| 89  | 98.72 ± 28.90  | 1.1.1.18   | Inositol 2-dehydrogenase                           |
| 90  | 98.89 ± 63.96  | 1.7.99.4   | Nitrate reductase                                  |
| 91  | 99.76 ± 31.99  | 1.1.1.6    | Glycerol dehydrogenase                             |
| 92  | 100.30 ± 46.59 | 1.6.99.3   | NADH dehydrogenase                                 |
| 93  | 101.98 ± 36.09 | 1.16.3.2   | Bacterial non-heme ferritin                        |
| 94  | 102.05 ± 30.37 | 1.1.1.157  | 3-hydroxybutyryl-CoA dehydrogenase                 |
| 95  | 102.12 ± 42.64 | 1.3.98.1   | Dihydroorotate oxidase (fumarate)                  |
| 96  | 103.14 ± 60.57 | 1.2.4.1    | Pyruvate dehydrogenase (acetyl-transferring)       |
| 97  | 103.98 ± 33.77 | 1.13.12.16 | Nitronate monooxygenase                            |
| 98  | 105.43 ± 24.03 | 1.8.4.8    | Phosphoadenylyl-sulfate reductase (thioredoxin)    |
| 99  | 106.10 ± 68.19 | 1.2.4.2    | Oxoglutarate dehydrogenase (succinyl-transferring) |
| 100 | 106.39 ± 95.96 | 1.7.2.5.   | Nitric-oxide reductase (cytochrome c)              |
|     |                |            |                                                    |

## Acidic cave biofilms (3 metagenomes)

| row | Avg.rank        | <b>EC</b> number | Oxidoreductase                                   |
|-----|-----------------|------------------|--------------------------------------------------|
| 101 | $1.00 \pm 0.00$ | 1.6.5.3          | NADH:ubiquinone reductase (H(+)-translocating)   |
| 102 | $3.00 \pm 0.82$ | 1.8.98.1         | CoBCoM heterodisulfide reductase                 |
| 103 | 3.33 ± 1.25     | 1.8.5.4          | Sulfide:quinone reductase                        |
| 104 | $3.67 \pm 0.47$ | 1.17.4.1         | Ribonucleoside-diphosphate reductase             |
| 105 | $4.00 \pm 1.41$ | 1.4.1.13         | Glutamate synthase (NADPH)                       |
| 106 | $6.00 \pm 0.00$ | 1.8.1.4          | Dihydrolipoyl dehydrogenase                      |
| 107 | $7.00 \pm 0.00$ | 1.2.4.1          | Pyruvate dehydrogenase (acetyl-transferring)     |
| 108 | 11.33 ± 3.40    | 1.11.1.21        | Catalase peroxidase                              |
| 109 | 12.00 ± 3.56    | 1.4.4.2          | Glycine dehydrogenase (aminomethyl-transferring) |
| 110 | 12.33 ± 1.70    | 1.7.1.15         | Nitrite reductase (NADH)                         |
| 111 | 12.67 ± 5.19    | 1.1.1.22         | UDP-glucose 6-dehydrogenase                      |

| 112 | 14.00 ± 5.35     | 1.7.99.4   | Nitrate reductase                                   |
|-----|------------------|------------|-----------------------------------------------------|
| 113 | 15.00 ± 4.97     | 1.11.1.15  | Peroxiredoxin                                       |
| 114 | 15.67 ± 3.40     | 1.1.1.205  | IMP dehydrogenase                                   |
| 115 | 16.00 ± 1.63     | 1.3.99.22  | Coproporphyrinogen dehydrogenase                    |
| 116 | 20.33 ± 7.93     | 1.1.1.28   | D-lactate dehydrogenase                             |
| 117 | 20.67 ± 9.84     | 1.1.1.42   | Isocitrate dehydrogenase (NADP(+))                  |
| 118 | 21.33 ± 8.96     | 1.2.1.88   | L-glutamate gamma-semialdehyde dehydrogenase        |
| 119 | 21.67 ± 2.36     | 1.1.1.49   | Glucose-6-phosphate dehydrogenase (NADP(+))         |
| 120 | 24.33 ± 6.60     | 1.8.1.8    | Protein-disulfide reductase                         |
| 121 | 24.33 ± 3.40     | 1.17.1.1   | CDP-4-dehydro-6-deoxyglucose reductase              |
| 122 | 26.33 ± 2.05     | 1.8.1.9    | Thioredoxin-disulfide reductase                     |
| 123 | 28.00 ± 14.31    | 1.6.99.3   | NADH dehydrogenase                                  |
| 124 | 28.33 ± 8.96     | 1.1.1.3    | Homoserine dehydrogenase                            |
| 125 | 28.33 ± 6.13     | 1.1.1.23   | Histidinol dehydrogenase                            |
| 126 | 30.33 ± 4.78     | 1.4.3.16   | L-aspartate oxidase                                 |
| 127 | 31.00 ± 2.94     | 1.8.1.7    | Glutathione-disulfide reductase                     |
| 128 | 31.67 ± 21.55    | 1.1.1.100  | 3-oxoacyl-[acyl-carrier-protein] reductase          |
| 129 | 32.33 ± 3.09     | 1.2.1.70   | Glutamyl-tRNA reductase                             |
| 130 | 34.67 ± 8.50     | 1.2.1.11   | Aspartate-semialdehyde dehydrogenase                |
| 131 | 34.67 ± 15.84    | 1.1.3.15   | (S)-2-hydroxy-acid oxidase                          |
|     |                  |            | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 132 | 35.00 ± 4.08     | 1.1.1.40   | (NADP(+))                                           |
| 133 | 35.67 ± 14.97    | 1.1.1.267  | 1-deoxy-D-xylulose-5-phosphate reductoisomerase     |
| 134 | 35.67 ± 12.50    | 1.5.1.20   | Methylenetetrahydrofolate reductase (NAD(P)H)       |
| 135 | 37.33 ± 9.46     | 1.1.1.85   | 3-isopropylmalate dehydrogenase                     |
|     |                  |            | Magnesium-protoporphyrin IX monomethyl ester        |
| 136 | $40.00 \pm 7.87$ | 1.14.13.81 | (oxidative) cyclase                                 |
| 137 | 40.67 ± 4.99     | 1.2.1.41   | Glutamate-5-semialdehyde dehydrogenase              |
| 138 | 43.00 ± 12.08    | 1.1.5.3    | Glycerol-3-phosphate dehydrogenase                  |
| 139 | 43.67 ± 3.40     | 1.4.99.1   | 1.4.99.6                                            |
|     |                  |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate        |
| 140 | 46.33 ± 4.11     | 1.17.7.1   | synthase (ferredoxin)                               |
|     |                  |            | Glyceraldehyde-3-phosphate dehydrogenase            |
| 141 | 47.00 ± 14.45    | 1.2.1.12   | (phosphorylating)                                   |
| 142 | 47.33 ± 3.30     | 1.5.1.5    | Methylenetetrahydrofolate dehydrogenase (NADP(+))   |
|     |                  |            | Phosphogluconate dehydrogenase (NAD(+)-             |
| 143 | 48.67 ± 15.58    | 1.1.1.343  | dependent, decarboxylating)                         |
| 144 | 48.67 ± 16.54    | 1.2.7.3    | 2-oxoglutarate synthase                             |
| 145 | 49.67 ± 9.67     | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase  |
| 146 | 50.00 ± 27.29    | 1.2.1.2    | Formate dehydrogenase                               |
| 147 | 50.67 ± 7.59     | 1.2.1.38   | N-acetyl-gamma-glutamyl-phosphate reductase         |
| 148 | 51.50 ± 30.50    | 1.8.5.2    | Thiosulfate dehydrogenase (quinone)                 |
| 149 | 52.67 ± 9.84     | 1.2.99.2   | Carbon-monoxide dehydrogenase (acceptor)            |

| 150 | 54.00 ± 16.57 | 1.9.3.1    | Cytochrome-c oxidase                               |
|-----|---------------|------------|----------------------------------------------------|
| 151 | 54.33 ± 13.60 | 1.3.1.1    | Dihydrouracil dehydrogenase (NAD(+))               |
| 152 | 55.33 ± 56.41 | 1.5.3.1    | Sarcosine oxidase                                  |
| 153 | 57.00 ± 15.25 | 1.3.3.3    | Coproporphyrinogen oxidase                         |
| 154 | 58.33 ± 8.99  | 1.16.3.1   | Ferroxidase                                        |
| 155 | 58.67 ± 20.85 | 1.1.1.1    | Alcohol dehydrogenase                              |
| 156 | 59.67 ± 9.67  | 1.1.1.262  | 4-hydroxythreonine-4-phosphate dehydrogenase       |
| 130 | 39.07 ± 9.07  | 1.1.1.202  | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si- |
| 157 | 60.33 ± 4.11  | 1.3.1.10   | specific)                                          |
| 158 | 60.33 ± 15.76 | 1.3.5.1    | Succinate dehydrogenase (quinone)                  |
| 159 | 60.33 ± 5.25  | 1.1.1.219  | Dihydrokaempferol 4-reductase                      |
| 160 | 60.67 ± 28.55 | 1.3.3.4    | Protoporphyrinogen oxidase                         |
| 161 | 61.33 ± 8.22  | 1.4.3.19   | Glycine oxidase                                    |
| 162 | 61.33 ± 12.50 | 1.3.5.2    | Dihydroorotate dehydrogenase (quinone)             |
| 163 | 62.00 ± 28.08 | 1.4.1.1    | Alanine dehydrogenase                              |
| 164 | 63.33 ± 10.62 | 1.15.1.1   | Superoxide dismutase                               |
| 165 | 63.67 ± 11.32 | 1.14.12.17 | Nitric oxide dioxygenase                           |
| 166 | 64.67 ± 11.26 | 1.1.1.193  | 5-amino-6-(5-phosphoribosylamino)uracil reductase  |
| 167 | 65.33 ± 23.80 | 1.1.1.37   | Malate dehydrogenase                               |
| 168 | 65.50 ± 15.50 | 1.13.11.18 | Persulfide dioxygenase                             |
| 169 | 65.67 ± 14.82 | 1.3.8.7    | Medium-chain acyl-CoA dehydrogenase                |
| 170 | 66.00 ± 13.14 | 1.1.1.86   | Ketol-acid reductoisomerase (NADP(+))              |
| 171 | 66.67 ± 10.87 | 1.3.1.98   | UDP-N-acetylmuramate dehydrogenase                 |
| 172 | 66.67 ± 20.53 | 1.1.1.47   | Glucose 1-dehydrogenase (NAD(P)(+))                |
| 173 | 70.33 ± 15.46 | 1.1.1.133  | dTDP-4-dehydrorhamnose reductase                   |
| 174 | 70.67 ± 0.47  | 1.20.4.1   | Arsenate reductase (glutaredoxin)                  |
| 175 | 73.00 ± 1.00  | 1.97.1.4   | [Formate-C-acetyltransferase]-activating enzyme    |
| 176 | 74.33 ± 12.66 | 1.8.4.11   | Peptide-methionine (S)-S-oxide reductase           |
| 177 | 74.33 ± 12.71 | 1.5.1.2    | Pyrroline-5-carboxylate reductase                  |
| 178 | 75.67 ± 10.84 | 1.1.1.94   | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))     |
| 179 | 79.67 ± 9.03  | 1.1.1.35   | 3-hydroxyacyl-CoA dehydrogenase                    |
| 180 | 80.67 ± 18.91 | 1.8.4.12   | Peptide-methionine (R)-S-oxide reductase           |
| 181 | 81.33 ± 2.62  | 1.5.1.33   | Pteridine reductase                                |
| 182 | 83.67 ± 21.55 | 1.1.1.25   | Shikimate dehydrogenase                            |
| 183 | 85.00 ± 27.90 | 1.4.3.5    | Pyridoxal 5'-phosphate synthase                    |
| 184 | 85.33 ± 7.59  | 1.6.5.5    | NADPH:quinone reductase                            |
| 185 | 86.00 ± 2.16  | 1.14.11.33 | DNA oxidative demethylase                          |
| 186 | 86.33 ± 13.42 | 1.17.1.4   | Xanthine dehydrogenase                             |
| 187 | 86.67 ± 4.11  | 1.3.1.34   | 2,4-dienoyl-CoA reductase (NADPH)                  |
| 188 | 86.67 ± 12.66 | 1.17.1.8   | 4-hydroxy-tetrahydrodipicolinate reductase         |
| 189 | 87.67 ± 15.11 | 1.2.1.3    | Aldehyde dehydrogenase (NAD(+))                    |
| 190 | 87.67 ± 33.16 | 1.6.5.2    | NAD(P)H dehydrogenase (quinone)                    |
| 191 | 90.33 ± 8.58  | 1.2.1.16   | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
|     |               |            |                                                    |

| 192 | 91.33 ± 11.61 | 1.1.1.38   | Malate dehydrogenase (oxaloacetate-decarboxylating) |
|-----|---------------|------------|-----------------------------------------------------|
| 193 | 91.67 ± 60.25 | 1.13.12.3  | Tryptophan 2-monooxygenase                          |
| 194 | 92.33 ± 4.92  | 1.1.1.271  | GDP-L-fucose synthase                               |
| 195 | 92.33 ± 20.04 | 1.4.1.3    | Glutamate dehydrogenase (NAD(P)(+))                 |
| 196 | 95.67 ± 30.23 | 1.13.11.5  | Homogentisate 1,2-dioxygenase                       |
| 197 | 96.33 ± 21.30 | 1.3.1.12   | Prephenate dehydrogenase                            |
| 198 | 97.33 ± 4.64  | 1.13.11.53 | Acireductone dioxygenase (Ni(2+)-requiring)         |
| 199 | 98.67 ± 11.12 | 1.6.99.1   | NADPH dehydrogenase                                 |
| 200 | 98.67 ± 6.94  | 1.2.1.89   | D-glyceraldehyde dehydrogenase (NADP(+))            |

## Freshwater (15 metagenomes)

| row | Avg.rank        | EC number | Oxidoreductase                                     |
|-----|-----------------|-----------|----------------------------------------------------|
| 201 | $1.00 \pm 0.00$ | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating)     |
| 202 | $2.27 \pm 1.00$ | 1.17.4.1  | Ribonucleoside-diphosphate reductase               |
| 203 | 3.67 ± 1.19     | 1.4.1.13  | Glutamate synthase (NADPH)                         |
| 204 | $4.40 \pm 1.70$ | 1.9.3.1   | Cytochrome-c oxidase                               |
| 205 | $5.60 \pm 1.40$ | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)       |
| 206 | $6.40 \pm 1.74$ | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase         |
| 207 | $9.40 \pm 3.34$ | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring) |
| 208 | 9.67 ± 2.36     | 1.3.5.1   | Succinate dehydrogenase (quinone)                  |
| 209 | 9.80 ± 2.56     | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                    |
| 210 | 11.53 ± 3.96    | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                |
| 211 | 12.20 ± 7.33    | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)           |
| 212 | 13.67 ± 3.11    | 1.8.1.4   | Dihydrolipoyl dehydrogenase                        |
| 213 | 14.20 ± 6.23    | 1.1.1.205 | IMP dehydrogenase                                  |
| 214 | 14.27 ± 3.41    | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)   |
| 215 | 15.13 ± 4.22    | 1.2.1.2   | Formate dehydrogenase                              |
| 216 | 15.80 ± 4.21    | 1.1.1.95  | Phosphoglycerate dehydrogenase                     |
| 217 | 17.40 ± 3.79    | 1.1.1.1   | Alcohol dehydrogenase                              |
| 218 | 17.73 ± 5.88    | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)        |
| 219 | 23.00 ± 4.59    | 1.1.1.42  | Isocitrate dehydrogenase (NADP(+))                 |
| 220 | 23.47 ± 7.54    | 1.6.5.5   | NADPH:quinone reductase                            |
| 221 | 25.53 ± 9.03    | 1.1.1.22  | UDP-glucose 6-dehydrogenase                        |
| 222 | 25.93 ± 13.43   | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                    |
| 223 | 26.73 ± 5.82    | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
| 224 | 27.87 ± 7.19    | 1.1.1.3   | Homoserine dehydrogenase                           |
| 225 | 29.47 ± 8.66    | 1.8.1.9   | Thioredoxin-disulfide reductase                    |
| 226 | 31.40 ± 7.64    | 1.3.99.22 | Coproporphyrinogen dehydrogenase                   |
| 227 | 32.07 ± 10.17   | 1.1.99.1  | Choline dehydrogenase                              |
|     |                 |           | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate       |
| 228 | 33.87 ± 6.76    | 1.17.7.1  | synthase (ferredoxin)                              |
| 229 | 35.73 ± 18.71   | 1.3.99.26 | All-trans-zeta-carotene desaturase                 |
| 230 | 37.00 ± 10.03   | 1.2.1.18  | Malonate-semialdehyde dehydrogenase (acetylating)  |

| 224  | 20.02 + 0.20  | 4452       |                                                     |
|------|---------------|------------|-----------------------------------------------------|
| 231  | 38.93 ± 8.39  | 1.1.5.3    | Glycerol-3-phosphate dehydrogenase                  |
| 232  | 39.13 ± 9.41  | 1.2.1.11   | Aspartate-semialdehyde dehydrogenase                |
| 233  | 39.53 ± 15.10 | 1.5.3.1    | Sarcosine oxidase                                   |
| 234  | 40.73 ± 28.16 | 1.2.1.8    | Betaine-aldehyde dehydrogenase                      |
| 20-  | 44.07 . 44.74 | 40440      | Glyceraldehyde-3-phosphate dehydrogenase            |
| 235  | 41.07 ± 14.71 | 1.2.1.12   | (phosphorylating)                                   |
| 236  | 42.40 ± 14.80 | 1.11.1.15  | Peroxiredoxin                                       |
| 237  | 42.53 ± 16.33 | 1.6.99.3   | NADH dehydrogenase                                  |
|      |               |            | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 238  | 45.53 ± 15.21 | 1.1.1.40   | (NADP(+))                                           |
| 239  | 45.60 ± 34.38 | 1.3.99.16  | Isoquinoline 1-oxidoreductase                       |
| 240  | 45.80 ± 11.09 | 1.4.3.16   | L-aspartate oxidase                                 |
| 241  | 48.53 ± 19.28 | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase  |
| 242  | 49.33 ± 17.46 | 1.2.1.88   | L-glutamate gamma-semialdehyde dehydrogenase        |
| 243  | 49.53 ± 13.74 | 1.1.1.85   | 3-isopropylmalate dehydrogenase                     |
| 244  | 49.60 ± 24.05 | 1.11.1.21  | Catalase peroxidase                                 |
| 245  | 52.53 ± 10.52 | 1.1.1.23   | Histidinol dehydrogenase                            |
| 246  | 53.00 ± 17.63 | 1.1.1.86   | Ketol-acid reductoisomerase (NADP(+))               |
| 247  | 53.60 ± 16.55 | 1.2.1.41   | Glutamate-5-semialdehyde dehydrogenase              |
| 248  | 53.80 ± 13.42 | 1.1.3.15   | (S)-2-hydroxy-acid oxidase                          |
| 249  | 55.87 ± 14.16 | 1.1.1.31   | 3-hydroxyisobutyrate dehydrogenase                  |
| 250  | 55.87 ± 23.66 | 1.17.1.4   | Xanthine dehydrogenase                              |
| 251  | 58.93 ± 21.57 | 1.1.1.37   | Malate dehydrogenase                                |
| 252  | 59.00 ± 19.18 | 1.3.1.98   | UDP-N-acetylmuramate dehydrogenase                  |
| 253  | 59.53 ± 25.71 | 1.5.1.5    | Methylenetetrahydrofolate dehydrogenase (NADP(+))   |
| 254  | 60.53 ± 25.62 | 1.4.7.1    | Glutamate synthase (ferredoxin)                     |
| 255  | 61.47 ± 17.69 | 1.1.1.267  | 1-deoxy-D-xylulose-5-phosphate reductoisomerase     |
| 256  | 61.53 ± 27.47 | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase            |
| 257  | 62.47 ± 27.23 | 1.1.1.271  | GDP-L-fucose synthase                               |
| 258  | 63.53 ± 23.06 | 1.1.1.157  | 3-hydroxybutyryl-CoA dehydrogenase                  |
| 259  | 65.20 ± 15.22 | 1.20.4.1   | Arsenate reductase (glutaredoxin)                   |
| 260  | 65.73 ± 13.57 | 1.1.1.91   | Aryl-alcohol dehydrogenase (NADP(+))                |
| 261  | 65.73 ± 21.14 | 1.2.1.38   | N-acetyl-gamma-glutamyl-phosphate reductase         |
|      |               |            | 4-methylaminobutanoate oxidase (formaldehyde-       |
| 262  | 68.13 ± 26.33 | 1.5.3.19   | forming)                                            |
| 263  | 68.67 ± 19.40 | 1.1.2.4    | D-lactate dehydrogenase (cytochrome)                |
| 264  | 68.93 ± 18.92 | 1.8.1.8    | Protein-disulfide reductase                         |
| 265  | 69.40 ± 10.76 | 1.5.1.20   | Methylenetetrahydrofolate reductase (NAD(P)H)       |
| 266  | 69.73 ± 24.76 | 1.1.2.3    | L-lactate dehydrogenase (cytochrome)                |
| 267  | 70.07 ± 21.77 | 1.14.13.22 | Cyclohexanone monooxygenase                         |
| 268  | 70.13 ± 19.48 | 1.15.1.1   | Superoxide dismutase                                |
| 269  | 71.53 ± 22.69 | 1.4.1.1    | Alanine dehydrogenase                               |
| 270  | 71.93 ± 8.41  | 1.1.1.193  | 5-amino-6-(5-phosphoribosylamino)uracil reductase   |
| _, 5 | , 1.55 _ 0.41 |            | 5 a 5 (5 prisopriorinos) iditinis/didenticadetase   |

| 271 | 72.67 ± 14.39  | 1.17.1.8   | 4-hydroxy-tetrahydrodipicolinate reductase          |
|-----|----------------|------------|-----------------------------------------------------|
| 272 | 73.07 ± 17.88  | 1.1.1.25   | Shikimate dehydrogenase                             |
| 273 | 73.20 ± 43.52  | 1.1.1.94   | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))      |
| 274 | 73.60 ± 19.37  | 1.1.1.49   | Glucose-6-phosphate dehydrogenase (NADP(+))         |
|     |                |            | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si-  |
| 275 | 74.47 ± 13.18  | 1.3.1.10   | specific)                                           |
| 276 | 75.87 ± 40.87  | 1.2.7.3    | 2-oxoglutarate synthase                             |
| 277 | 78.73 ± 22.94  | 1.8.4.11   | Peptide-methionine (S)-S-oxide reductase            |
| 278 | 79.40 ± 13.08  | 1.2.1.70   | Glutamyl-tRNA reductase                             |
|     |                |            | 3-methyl-2-oxobutanoate dehydrogenase (2-           |
| 279 | 79.60 ± 23.47  | 1.2.4.4    | methylpropanoyl-transferring)                       |
| 280 | 81.73 ± 19.34  | 1.1.1.133  | dTDP-4-dehydrorhamnose reductase                    |
| 281 | 82.33 ± 25.30  | 1.14.19.1  | Stearoyl-CoA 9-desaturase                           |
|     |                |            | Ferredoxin:protochlorophyllide reductase (ATP-      |
| 282 | 82.60 ± 34.48  | 1.3.7.7    | dependent)                                          |
| 283 | 83.87 ± 25.34  | 1.3.1.12   | Prephenate dehydrogenase                            |
| 284 | 84.07 ± 23.49  | 1.18.1.2   | FerredoxinNADP(+) reductase                         |
| 285 | 84.60 ± 26.50  | 1.1.1.18   | Inositol 2-dehydrogenase                            |
| 286 | 86.07 ± 16.66  | 1.5.1.2    | Pyrroline-5-carboxylate reductase                   |
| 287 | 87.33 ± 23.13  | 1.4.1.3    | Glutamate dehydrogenase (NAD(P)(+))                 |
| 288 | 88.27 ± 38.76  | 1.1.1.38   | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 289 | 88.60 ± 21.53  | 1.13.12.16 | Nitronate monooxygenase                             |
| 290 | 90.53 ± 36.54  | 1.1.5.2    | Quinoprotein glucose dehydrogenase (PQQ, quinone)   |
| 291 | 92.93 ± 28.49  | 1.8.1.2    | Assimilatory sulfite reductase (NADPH)              |
| 292 | 96.40 ± 23.27  | 1.3.8.6    | Glutaryl-CoA dehydrogenase (ETF)                    |
|     |                |            | Phosphogluconate dehydrogenase (NAD(+)-             |
| 293 | 97.73 ± 23.09  | 1.1.1.343  | dependent, decarboxylating)                         |
| 294 | 97.93 ± 16.58  | 1.4.3.5    | Pyridoxal 5'-phosphate synthase                     |
| 295 | 98.47 ± 17.93  | 1.1.1.262  | 4-hydroxythreonine-4-phosphate dehydrogenase        |
| 296 | 100.47 ± 39.73 | 1.1.3.6    | Cholesterol oxidase                                 |
| 297 | 102.13 ± 28.21 | 1.3.1.34   | 2,4-dienoyl-CoA reductase (NADPH)                   |
| 298 | 103.40 ± 37.35 | 1.3.99.35  | Chlorophyllide a reductase                          |
| 299 | 105.47 ± 14.36 | 1.17.99.6  | Epoxyqueuosine reductase                            |
| 300 | 108.33 ± 20.85 | 1.3.8.1    | Short-chain acyl-CoA dehydrogenase                  |
|     |                |            |                                                     |
|     |                |            |                                                     |

| Hot springs ( | 8 metagenomes) |
|---------------|----------------|
|---------------|----------------|

| row | Avg.rank    | EC number | Oxidoreductase                                 |
|-----|-------------|-----------|------------------------------------------------|
| 301 | 1.25 ± 0.43 | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating) |
| 302 | 3.50 ± 1.80 | 1.17.4.1  | Ribonucleoside-diphosphate reductase           |
| 303 | 7.43 ± 6.02 | 1.2.7.5   | Aldehyde ferredoxin oxidoreductase             |
| 304 | 8.00 ± 4.06 | 1.2.7.3   | 2-oxoglutarate synthase                        |
| 305 | 8.88 ± 2.57 | 1.2.1.2   | Formate dehydrogenase                          |
| 306 | 8.88 ± 7.25 | 1.8.98.1  | CoBCoM heterodisulfide reductase               |

| 307 | 15.38 ± 13.02 | 1.4.1.13  | Glutamate synthase (NADPH)                          |
|-----|---------------|-----------|-----------------------------------------------------|
| 308 | 17.25 ± 11.39 | 1.8.1.4   | Dihydrolipoyl dehydrogenase                         |
| 309 | 18.00 ± 5.48  | 1.1.1.1   | Alcohol dehydrogenase                               |
| 310 | 18.75 ± 7.77  | 1.1.3.15  | (S)-2-hydroxy-acid oxidase                          |
| 311 | 18.88 ± 8.52  | 1.3.5.1   | Succinate dehydrogenase (quinone)                   |
| 312 | 19.12 ± 5.80  | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase          |
| 313 | 21.62 ± 20.54 | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)            |
| 314 | 22.88 ± 38.82 | 1.2.7.1   | Pyruvate synthase                                   |
| 315 | 25.12 ± 13.49 | 1.8.1.9   | Thioredoxin-disulfide reductase                     |
| 316 | 25.75 ± 15.45 | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)    |
| 317 | 26.38 ± 34.63 | 1.97.1.4  | [Formate-C-acetyltransferase]-activating enzyme     |
| 318 | 28.75 ± 8.76  | 1.11.1.15 | Peroxiredoxin                                       |
| 319 | 31.75 ± 26.78 | 1.9.3.1   | Cytochrome-c oxidase                                |
| 320 | 32.62 ± 29.47 | 1.7.99.4  | Nitrate reductase                                   |
| 321 | 34.00 ± 21.11 | 1.1.1.95  | Phosphoglycerate dehydrogenase                      |
| 322 | 35.12 ± 26.72 | 1.2.7.8   | Indolepyruvate ferredoxin oxidoreductase            |
| 323 | 36.12 ± 28.47 | 1.12.99.6 | Hydrogenase (acceptor)                              |
| 324 | 37.00 ± 15.71 | 1.4.1.3   | Glutamate dehydrogenase (NAD(P)(+))                 |
| 325 | 37.12 ± 14.26 | 1.5.3.1   | Sarcosine oxidase                                   |
| 326 | 37.33 ± 27.34 | 1.2.7.4   | Carbon-monoxide dehydrogenase (ferredoxin)          |
| 327 | 37.50 ± 16.66 | 1.1.1.22  | UDP-glucose 6-dehydrogenase                         |
| 328 | 38.50 ± 20.05 | 1.1.1.205 | IMP dehydrogenase                                   |
| 329 | 41.33 ± 24.52 | 1.10.3.12 | Menaquinol oxidase (H(+)-transporting)              |
| 330 | 42.25 ± 29.19 | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                     |
| 331 | 42.88 ± 13.43 | 1.1.1.133 | dTDP-4-dehydrorhamnose reductase                    |
| 332 | 44.25 ± 35.24 | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)        |
| 333 | 44.29 ± 7.24  | 1.1.1.86  | Ketol-acid reductoisomerase (NADP(+))               |
| 334 | 44.38 ± 23.10 | 1.1.1.42  | Isocitrate dehydrogenase (NADP(+))                  |
| 335 | 44.75 ± 12.17 | 1.1.5.3   | Glycerol-3-phosphate dehydrogenase                  |
| 336 | 46.29 ± 28.99 | 1.1.1.14  | L-iditol 2-dehydrogenase                            |
| 337 | 47.67 ± 42.05 | 1.17.4.2  | Ribonucleoside-triphosphate reductase               |
| 338 | 47.88 ± 69.62 | 1.8.5.4   | Sulfide:quinone reductase                           |
| 339 | 49.00 ± 24.94 | 1.2.99.5  | Formylmethanofuran dehydrogenase                    |
| 340 | 49.86 ± 26.55 | 1.3.99.22 | Coproporphyrinogen dehydrogenase                    |
| 341 | 50.12 ± 26.59 | 1.1.1.38  | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 342 | 50.62 ± 22.93 | 1.4.3.16  | L-aspartate oxidase                                 |
| 343 | 51.00 ± 17.49 | 1.1.1.3   | Homoserine dehydrogenase                            |
| 344 | 52.12 ± 22.72 | 1.1.1.85  | 3-isopropylmalate dehydrogenase                     |
| 345 | 52.88 ± 24.71 | 1.1.1.23  | Histidinol dehydrogenase                            |
| 346 | 54.50 ± 13.12 | 1.2.1.11  | Aspartate-semialdehyde dehydrogenase                |
| 347 | 55.38 ± 43.30 | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                 |
|     |               |           | 2,3-bis-O-geranylgeranyl-sn-glycerol 1-phosphate    |
| 348 | 57.57 ± 20.80 | 1.3.1.101 | reductase (NAD(P)H)                                 |

| 349 | 57.75 ± 21.76 | 1.4.1.1    | Alanine dehydrogenase                              |
|-----|---------------|------------|----------------------------------------------------|
|     |               |            | Glyceraldehyde-3-phosphate dehydrogenase           |
| 350 | 62.14 ± 28.75 | 1.2.1.12   | (phosphorylating)                                  |
| 351 | 63.50 ± 37.88 | 1.8.4.8    | Phosphoadenylyl-sulfate reductase (thioredoxin)    |
| 352 | 64.00 ± 20.01 | 1.5.1.2    | Pyrroline-5-carboxylate reductase                  |
| 353 | 64.57 ± 19.12 | 1.1.1.26   | Glyoxylate reductase                               |
| 354 | 64.57 ± 44.31 | 1.16.1.1   | Mercury(II) reductase                              |
| 355 | 67.38 ± 23.88 | 1.2.1.70   | Glutamyl-tRNA reductase                            |
| 356 | 67.88 ± 37.17 | 1.6.99.3   | NADH dehydrogenase                                 |
| 357 | 70.57 ± 21.39 | 1.8.99.3   | Hydrogensulfite reductase                          |
| 358 | 71.12 ± 23.72 | 1.15.1.1   | Superoxide dismutase                               |
| 359 | 71.25 ± 34.43 | 1.17.1.4   | Xanthine dehydrogenase                             |
| 360 | 71.25 ± 20.55 | 1.1.1.359  | Aldose 1-dehydrogenase (NAD(P)(+))                 |
| 361 | 74.12 ± 32.95 | 1.7.1.15   | Nitrite reductase (NADH)                           |
| 362 | 74.50 ± 19.95 | 1.12.7.2   | Ferredoxin hydrogenase                             |
| 363 | 74.62 ± 30.97 | 1.2.1.41   | Glutamate-5-semialdehyde dehydrogenase             |
| 364 | 75.12 ± 55.14 | 1.1.1.31   | 3-hydroxyisobutyrate dehydrogenase                 |
| 365 | 75.20 ± 46.07 | 1.3.1.34   | 2,4-dienoyl-CoA reductase (NADPH)                  |
| 366 | 75.29 ± 16.66 | 1.3.1.12   | Prephenate dehydrogenase                           |
| 367 | 75.33 ± 67.06 | 1.2.1.89   | D-glyceraldehyde dehydrogenase (NADP(+))           |
|     |               |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate       |
| 368 | 77.17 ± 23.70 | 1.17.7.1   | synthase (ferredoxin)                              |
| 369 | 77.38 ± 22.51 | 1.6.3.3    | NADH oxidase (H(2)O(2)-forming)                    |
| 370 | 77.50 ± 28.32 | 1.1.1.37   | Malate dehydrogenase                               |
| 371 | 77.75 ± 55.87 | 1.2.1.88   | L-glutamate gamma-semialdehyde dehydrogenase       |
| 372 | 80.57 ± 14.31 | 1.1.1.25   | Shikimate dehydrogenase                            |
| 373 | 80.57 ± 33.70 | 1.2.1.3    | Aldehyde dehydrogenase (NAD(+))                    |
| 374 | 81.80 ± 48.05 | 1.13.11.55 | Sulfur oxygenase/reductase                         |
| 375 | 82.14 ± 15.55 | 1.1.1.267  | 1-deoxy-D-xylulose-5-phosphate reductoisomerase    |
| 376 | 82.29 ± 54.85 | 1.1.1.18   | Inositol 2-dehydrogenase                           |
|     |               |            | Magnesium-protoporphyrin IX monomethyl ester       |
| 377 | 82.57 ± 38.25 | 1.14.13.81 | (oxidative) cyclase                                |
| 378 | 83.20 ± 46.95 | 1.3.7.8    | Benzoyl-CoA reductase                              |
| 379 | 84.33 ± 40.20 | 1.12.98.1  | Coenzyme F420 hydrogenase                          |
| 380 | 84.71 ± 17.11 | 1.8.99.2   | Adenylyl-sulfate reductase                         |
| 381 | 85.67 ± 64.34 | 1.12.1.2   | Hydrogen dehydrogenase                             |
| 382 | 86.33 ± 26.80 | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
| 383 | 86.50 ± 12.07 | 1.1.1.94   | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))     |
| 384 | 87.33 ± 12.28 | 1.12.98.4  | Sulfhydrogenase                                    |
| 385 | 88.62 ± 48.95 | 1.1.1.261  | sn-glycerol-1-phosphate dehydrogenase              |
| 386 | 88.71 ± 21.68 | 1.1.1.262  | 4-hydroxythreonine-4-phosphate dehydrogenase       |
| 387 | 90.33 ± 46.99 | 1.2.1.76   | Succinate-semialdehyde dehydrogenase (acetylating) |
| 388 | 90.50 ± 28.73 | 1.5.1.5    | Methylenetetrahydrofolate dehydrogenase (NADP(+))  |

|     |               |           | Glyceraldehyde-3-phosphate       | dehydrogenase     |
|-----|---------------|-----------|----------------------------------|-------------------|
| 389 | 90.60 ± 60.85 | 1.2.7.6   | (ferredoxin)                     |                   |
| 390 | 91.83 ± 41.24 | 1.1.1.88  | Hydroxymethylglutaryl-CoA reduct | ase               |
|     |               |           | 3-methyl-2-oxobutanoate deh      | ydrogenase (2-    |
| 391 | 92.83 ± 12.59 | 1.2.4.4   | methylpropanoyl-transferring)    |                   |
| 392 | 94.29 ± 60.04 | 1.1.1.374 | UDP-N-acetylglucosamine 3-dehyd  | rogenase          |
| 393 | 94.88 ± 30.02 | 1.1.1.157 | 3-hydroxybutyryl-CoA dehydrogena | ase               |
| 394 | 96.00 ± 10.61 | 1.1.1.193 | 5-amino-6-(5-phosphoribosylamino | )uracil reductase |
|     |               |           | UDP-N-acetyl-2-amino-2-deoxygluc | curonate          |
| 395 | 96.25 ± 25.93 | 1.1.1.335 | dehydrogenase                    |                   |
| 396 | 96.50 ± 59.26 | 1.3.1.14  | Dihydroorotate dehydrogenase (NA | \D(+))            |
| 397 | 96.80 ± 74.63 | 1.12.1.3  | Hydrogen dehydrogenase (NADP(+   | ))                |
| 398 | 97.33 ± 23.11 | 1.1.1.136 | UDP-N-acetylglucosamine 6-dehyd  | rogenase          |
| 399 | 98.00 ± 31.43 | 1.2.1.16  | Succinate-semialdehyde dehydroge | enase (NAD(P)(+)) |
| 400 | 99.25 ± 60.92 | 1.2.1.43  | Formate dehydrogenase (NADP(+))  |                   |

# Marine aphotic zone (7 metagenomes)

| row | Avg.rank         | EC number | Oxidoreductase                                    |
|-----|------------------|-----------|---------------------------------------------------|
| 401 | 4.14 ± 4.09      | 1.17.4.1  | Ribonucleoside-diphosphate reductase              |
| 402 | 4.86 ± 0.99      | 1.4.1.13  | Glutamate synthase (NADPH)                        |
| 403 | 6.14 ± 5.54      | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase        |
| 404 | $6.14 \pm 3.48$  | 1.9.3.1   | Cytochrome-c oxidase                              |
| 405 | 9.14 ± 2.03      | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                   |
| 406 | 10.43 ± 3.20     | 1.1.1.1   | Alcohol dehydrogenase                             |
| 407 | $11.00 \pm 5.01$ | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)      |
| 408 | 13.14 ± 5.79     | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                   |
| 409 | 13.57 ± 4.69     | 1.17.1.4  | Xanthine dehydrogenase                            |
| 410 | $13.71 \pm 5.50$ | 1.3.5.1   | Succinate dehydrogenase (quinone)                 |
| 411 | 13.86 ± 2.23     | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase               |
| 412 | 18.86 ± 10.52    | 1.2.1.2   | Formate dehydrogenase                             |
| 413 | 20.14 ± 2.53     | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)       |
| 414 | 20.43 ± 2.61     | 1.8.1.4   | Dihydrolipoyl dehydrogenase                       |
| 415 | 20.57 ± 47.94    | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating)    |
| 416 | 20.71 ± 4.43     | 1.6.5.5   | NADPH:quinone reductase                           |
| 417 | 21.00 ± 3.38     | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)  |
| 418 | 22.43 ± 8.16     | 1.1.99.1  | Choline dehydrogenase                             |
| 419 | 26.29 ± 16.77    | 1.1.1.95  | Phosphoglycerate dehydrogenase                    |
| 420 | 26.71 ± 13.16    | 1.1.5.2   | Quinoprotein glucose dehydrogenase (PQQ, quinone) |
| 421 | 27.14 ± 55.89    | 1.5.3.1   | Sarcosine oxidase                                 |
| 422 | 27.86 ± 1.81     | 1.1.1.42  | Isocitrate dehydrogenase (NADP(+))                |
| 423 | 31.43 ± 58.76    | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)          |
| 424 | 31.57 ± 9.29     | 1.1.1.205 | IMP dehydrogenase                                 |

| 31.71 ± 4.80                   | 1.1.1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-hydroxyisobutyrate dehydrogenase                                             |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $32.43 \pm 5.97$               | 1.1.1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UDP-glucose 6-dehydrogenase                                                    |
| 34.86 ± 12.69                  | 1.2.1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L-glutamate gamma-semialdehyde dehydrogenase                                   |
| 35.43 ± 5.58                   | 1.1.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Homoserine dehydrogenase                                                       |
| 36.86 ± 11.46                  | 1.2.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Oxoglutarate dehydrogenase (succinyl-transferring)                             |
| 37.29 ± 7.28                   | 1.11.1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peroxiredoxin                                                                  |
| 38.57 ± 58.73                  | 1.5.8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dimethylglycine dehydrogenase                                                  |
| 38.71 ± 9.97                   | 1.3.99.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Isoquinoline 1-oxidoreductase                                                  |
| 39.43 ± 9.12                   | 1.2.1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Succinate-semialdehyde dehydrogenase (NAD(P)(+))                               |
| 39.86 ± 34.04                  | 1.8.1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thioredoxin-disulfide reductase                                                |
| 42.43 ± 6.02                   | 1.1.1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ketol-acid reductoisomerase (NADP(+))                                          |
| 44.43 ± 23.95                  | 1.1.1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-isopropylmalate dehydrogenase                                                |
| 44.86 ± 11.92                  | 1.2.1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aspartate-semialdehyde dehydrogenase                                           |
| 45.00 ± 21.97                  | 1.11.1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Catalase peroxidase                                                            |
| 45.29 ± 8.28                   | 1.2.1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Malonate-semialdehyde dehydrogenase (acetylating)                              |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-methyl-2-oxobutanoate dehydrogenase (2-                                      |
| 45.29 ± 15.42                  | 1.2.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | methylpropanoyl-transferring)                                                  |
| 45.29 ± 65.29                  | 1.2.7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-oxoglutarate synthase                                                        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Glyceraldehyde-3-phosphate dehydrogenase                                       |
| 45.57 ± 17.31                  | 1.2.1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (phosphorylating)                                                              |
| 47.86 ± 10.06                  | 1.6.99.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NADH dehydrogenase                                                             |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Malate dehydrogenase (oxaloacetate-decarboxylating)                            |
| 50.71 ± 12.23                  | 1.1.1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (NADP(+))                                                                      |
| 51.43 ± 10.22                  | 1.5.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Electron-transferring-flavoprotein dehydrogenase                               |
| 51.71 ± 16.86                  | 1.1.1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Malate dehydrogenase                                                           |
| 53.71 ± 12.53                  | 1.2.1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Glutamyl-tRNA reductase                                                        |
| 54.86 ± 24.91                  | 1.5.1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Methylenetetrahydrofolate dehydrogenase (NADP(+))                              |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate                                   |
| 56.00 ± 17.46                  | 1.17.7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | synthase (ferredoxin)                                                          |
| 59.29 ± 16.23                  | 1.1.1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Histidinol dehydrogenase                                                       |
| 60.00 ± 23.20                  | 1.5.1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Methylenetetrahydrofolate reductase (NAD(P)H)                                  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-methylaminobutanoate oxidase (formaldehyde-                                  |
| 63.00 ± 58.30                  | 1.5.3.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | forming)                                                                       |
| 63.86 ± 28.83                  | 1.3.1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,4-dienoyl-CoA reductase (NADPH)                                              |
| 66.29 ± 6.78                   | 1.4.7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Glutamate synthase (ferredoxin)                                                |
| 67.00 ± 14.48                  | 1.14.11.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Taurine dioxygenase                                                            |
| 69.43 ± 19.40                  | 1.3.99.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coproporphyrinogen dehydrogenase                                               |
| 70.14 ± 6.92                   | 1.8.4.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Peptide-methionine (S)-S-oxide reductase                                       |
| 70.57 ± 47.38                  | 1.1.3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (S)-2-hydroxy-acid oxidase                                                     |
| 75.00 ± 28.21                  | 1.1.5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Glycerol-3-phosphate dehydrogenase                                             |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |
| 75.57 ± 14.85                  | 1.1.1.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-deoxy-D-xylulose-5-phosphate reductoisomerase                                |
| 75.57 ± 14.85<br>75.86 ± 21.35 | 1.1.1.267<br>1.8.1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-deoxy-D-xylulose-5-phosphate reductoisomerase<br>Protein-disulfide reductase |
|                                | $32.43 \pm 5.97$ $34.86 \pm 12.69$ $35.43 \pm 5.58$ $36.86 \pm 11.46$ $37.29 \pm 7.28$ $38.57 \pm 58.73$ $38.71 \pm 9.97$ $39.43 \pm 9.12$ $39.86 \pm 34.04$ $42.43 \pm 6.02$ $44.43 \pm 23.95$ $44.86 \pm 11.92$ $45.00 \pm 21.97$ $45.29 \pm 8.28$ $45.29 \pm 15.42$ $45.29 \pm 65.29$ $45.57 \pm 17.31$ $47.86 \pm 10.06$ $50.71 \pm 12.23$ $51.43 \pm 10.22$ $51.71 \pm 16.86$ $53.71 \pm 12.53$ $54.86 \pm 24.91$ $56.00 \pm 17.46$ $59.29 \pm 16.23$ $60.00 \pm 23.20$ $63.00 \pm 58.30$ $63.86 \pm 28.83$ $66.29 \pm 6.78$ $67.00 \pm 14.48$ $69.43 \pm 19.40$ $70.14 \pm 6.92$ $70.57 \pm 47.38$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                           |

| 463 | 77.14 ± 14.10  | 1.4.1.1    | Alanine dehydrogenase                              |
|-----|----------------|------------|----------------------------------------------------|
| 464 | 78.57 ± 46.56  | 1.1.2.8    | Alcohol dehydrogenase (cytochrome c)               |
| 465 | 79.71 ± 19.43  | 1.1.1.25   | Shikimate dehydrogenase                            |
| 466 | 80.29 ± 16.77  | 1.2.1.41   | Glutamate-5-semialdehyde dehydrogenase             |
| 467 | 80.67 ± 19.35  | 1.1.1.14   | L-iditol 2-dehydrogenase                           |
| 468 | 82.57 ± 12.89  | 1.1.1.169  | 2-dehydropantoate 2-reductase                      |
| 469 | 82.86 ± 24.09  | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
| 470 | 84.00 ± 19.72  | 1.1.1.193  | 5-amino-6-(5-phosphoribosylamino)uracil reductase  |
| 471 | 84.43 ± 38.56  | 1.14.15.7  | Choline monooxygenase                              |
| 472 | 84.86 ± 16.09  | 1.3.1.12   | Prephenate dehydrogenase                           |
| 473 | 85.29 ± 48.25  | 1.14.13.22 | Cyclohexanone monooxygenase                        |
| 474 | 85.86 ± 44.96  | 1.4.99.1   | 1.4.99.6                                           |
| 475 | 86.43 ± 19.03  | 1.1.1.94   | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))     |
| 476 | 86.71 ± 70.18  | 1.8.99.2   | Adenylyl-sulfate reductase                         |
| 477 | 87.43 ± 48.47  | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase           |
| 478 | 88.71 ± 17.96  | 1.1.1.133  | dTDP-4-dehydrorhamnose reductase                   |
| 479 | 88.86 ± 26.99  | 1.3.8.1    | Short-chain acyl-CoA dehydrogenase                 |
| 480 | 93.71 ± 31.71  | 1.1.1.262  | 4-hydroxythreonine-4-phosphate dehydrogenase       |
| 481 | 94.14 ± 47.44  | 1.8.1.2    | Assimilatory sulfite reductase (NADPH)             |
| 482 | 95.00 ± 23.59  | 1.3.1.98   | UDP-N-acetylmuramate dehydrogenase                 |
| 483 | 95.29 ± 50.81  | 1.4.1.2    | Glutamate dehydrogenase                            |
| 484 | 97.29 ± 43.09  | 1.7.2.1    | Nitrite reductase (NO-forming)                     |
| 485 | 97.71 ± 25.14  | 1.17.4.2   | Ribonucleoside-triphosphate reductase              |
| 486 | 98.14 ± 11.52  | 1.2.1.38   | N-acetyl-gamma-glutamyl-phosphate reductase        |
| 487 | 98.14 ± 14.02  | 1.17.99.6  | Epoxyqueuosine reductase                           |
| 488 | 102.71 ± 51.47 | 1.1.1.308  | Sulfopropanediol 3-dehydrogenase                   |
| 489 | 103.86 ± 16.07 | 1.13.12.16 | Nitronate monooxygenase                            |
| 490 | 105.00 ± 53.32 | 1.7.99.4   | Nitrate reductase                                  |
| 491 | 105.71 ± 26.34 | 1.1.1.271  | GDP-L-fucose synthase                              |
| 492 | 106.43 ± 16.22 | 1.2.1.8    | Betaine-aldehyde dehydrogenase                     |
| 493 | 107.57 ± 17.99 | 1.1.1.125  | 2-deoxy-D-gluconate 3-dehydrogenase                |
|     |                |            | 2,3-bis-O-geranylgeranyl-sn-glycerol 1-phosphate   |
| 494 | 108.50 ± 44.20 | 1.3.1.101  | reductase (NAD(P)H)                                |
| 495 | 109.71 ± 23.67 | 1.20.4.1   | Arsenate reductase (glutaredoxin)                  |
| 496 | 111.43 ± 18.95 | 1.1.1.69   | Gluconate 5-dehydrogenase                          |
| 497 | 111.57 ± 26.93 | 1.1.1.157  | 3-hydroxybutyryl-CoA dehydrogenase                 |
| 498 | 112.29 ± 48.71 | 1.3.8.6    | Glutaryl-CoA dehydrogenase (ETF)                   |
| 499 | 113.14 ± 57.30 | 1.8.7.1    | Assimilatory sulfite reductase (ferredoxin)        |
| 500 | 113.43 ± 64.18 | 1.1.1.18   | Inositol 2-dehydrogenase                           |
|     |                |            |                                                    |

## Benthic zone and subsea floor (26 metagenomes)

row Avg.rank EC number Oxidoreductase

| 501 | 1.58 ± 1.92   | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating)    |
|-----|---------------|-----------|---------------------------------------------------|
| 502 | 2.85 ± 1.70   | 1.8.98.1  | CoBCoM heterodisulfide reductase                  |
| 503 | 6.00 ± 4.70   | 1.2.7.3   | 2-oxoglutarate synthase                           |
| 504 | 6.19 ± 6.01   | 1.2.7.5   | Aldehyde ferredoxin oxidoreductase                |
| 505 | 7.12 ± 3.68   | 1.17.4.1  | Ribonucleoside-diphosphate reductase              |
| 506 | 7.27 ± 7.47   | 1.2.1.2   | Formate dehydrogenase                             |
| 507 | 8.50 ± 2.65   | 1.4.1.13  | Glutamate synthase (NADPH)                        |
| 508 | 8.58 ± 4.48   | 1.2.7.1   | Pyruvate synthase                                 |
| 509 | 10.31 ± 6.46  | 1.97.1.4  | [Formate-C-acetyltransferase]-activating enzyme   |
| 510 | 13.19 ± 11.67 | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase        |
| 511 | 15.46 ± 8.47  | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)      |
| 512 | 16.81 ± 11.24 | 1.1.1.1   | Alcohol dehydrogenase                             |
| 513 | 17.77 ± 7.30  | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)  |
| 514 | 18.31 ± 9.08  | 1.1.1.95  | Phosphoglycerate dehydrogenase                    |
| 515 | 20.23 ± 7.45  | 1.2.7.8   | Indolepyruvate ferredoxin oxidoreductase          |
| 516 | 22.62 ± 11.26 | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase               |
| 517 | 23.12 ± 17.27 | 1.3.5.1   | Succinate dehydrogenase (quinone)                 |
| 518 | 29.62 ± 8.58  | 1.1.1.205 | IMP dehydrogenase                                 |
| 519 | 31.08 ± 24.17 | 1.2.7.4   | Carbon-monoxide dehydrogenase (ferredoxin)        |
| 520 | 32.96 ± 11.90 | 1.4.1.3   | Glutamate dehydrogenase (NAD(P)(+))               |
| 521 | 33.88 ± 11.60 | 1.8.1.9   | Thioredoxin-disulfide reductase                   |
|     |               |           | Glyceraldehyde-3-phosphate dehydrogenase          |
| 522 | 35.08 ± 13.84 | 1.2.1.12  | (phosphorylating)                                 |
| 523 | 35.35 ± 36.25 | 1.8.1.4   | Dihydrolipoyl dehydrogenase                       |
| 524 | 36.69 ± 16.71 | 1.1.1.22  | UDP-glucose 6-dehydrogenase                       |
| 525 | 37.27 ± 44.69 | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)          |
| 526 | 38.77 ± 23.86 | 1.1.1.14  | L-iditol 2-dehydrogenase                          |
| 527 | 39.31 ± 23.86 | 1.1.3.15  | (S)-2-hydroxy-acid oxidase                        |
| 528 | 39.73 ± 21.17 | 1.1.1.85  | 3-isopropylmalate dehydrogenase                   |
| 529 | 40.32 ± 32.62 | 1.17.1.4  | Xanthine dehydrogenase                            |
| 530 | 41.92 ± 26.86 | 1.2.1.43  | Formate dehydrogenase (NADP(+))                   |
| 531 | 43.81 ± 26.64 | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                   |
| 532 | 45.38 ± 16.92 | 1.5.1.20  | Methylenetetrahydrofolate reductase (NAD(P)H)     |
| 533 | 46.38 ± 11.87 | 1.1.1.3   | Homoserine dehydrogenase                          |
| 534 | 46.85 ± 18.87 | 1.5.1.5   | Methylenetetrahydrofolate dehydrogenase (NADP(+)) |
| 535 | 47.81 ± 21.10 | 1.4.3.16  | L-aspartate oxidase                               |
| 536 | 50.73 ± 55.21 | 1.9.3.1   | Cytochrome-c oxidase                              |
| 537 | 51.38 ± 43.14 | 1.17.4.2  | Ribonucleoside-triphosphate reductase             |
| 538 | 52.42 ± 21.89 | 1.1.1.86  | Ketol-acid reductoisomerase (NADP(+))             |
| 539 | 52.65 ± 23.76 | 1.2.1.11  | Aspartate-semialdehyde dehydrogenase              |
| 540 | 52.92 ± 31.89 | 1.5.3.1   | Sarcosine oxidase                                 |
| 541 | 53.40 ± 18.76 | 1.11.1.15 | Peroxiredoxin                                     |
| 542 | 53.62 ± 39.35 | 1.7.99.4  | Nitrate reductase                                 |
|     |               |           |                                                   |

| 54.23 ± 24.39                                                                                                                                                                                                                                                                | 1.3.8.1                                                                                                                                                                                                                                                                                                        | Short-chain acyl-CoA dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 54.42 ± 25.59                                                                                                                                                                                                                                                                | 1.1.1.157                                                                                                                                                                                                                                                                                                      | 3-hydroxybutyryl-CoA dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 55.12 ± 24.49                                                                                                                                                                                                                                                                | 1.1.5.3                                                                                                                                                                                                                                                                                                        | Glycerol-3-phosphate dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 56.42 ± 15.78                                                                                                                                                                                                                                                                | 1.4.1.1                                                                                                                                                                                                                                                                                                        | Alanine dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 56.54 ± 33.48                                                                                                                                                                                                                                                                | 1.6.5.5                                                                                                                                                                                                                                                                                                        | NADPH:quinone reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57.12 ± 33.59                                                                                                                                                                                                                                                                | 1.3.1.34                                                                                                                                                                                                                                                                                                       | 2,4-dienoyl-CoA reductase (NADPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 58.96 ± 29.17                                                                                                                                                                                                                                                                | 1.12.1.3                                                                                                                                                                                                                                                                                                       | Hydrogen dehydrogenase (NADP(+))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 59.92 ± 30.74                                                                                                                                                                                                                                                                | 1.2.1.3                                                                                                                                                                                                                                                                                                        | Aldehyde dehydrogenase (NAD(+))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 59.92 ± 33.35                                                                                                                                                                                                                                                                | 1.1.1.23                                                                                                                                                                                                                                                                                                       | Histidinol dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 62.31 ± 26.78                                                                                                                                                                                                                                                                | 1.2.1.41                                                                                                                                                                                                                                                                                                       | Glutamate-5-semialdehyde dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 62.76 ± 31.28                                                                                                                                                                                                                                                                | 1.1.1.42                                                                                                                                                                                                                                                                                                       | Isocitrate dehydrogenase (NADP(+))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 64.29 ± 31.27                                                                                                                                                                                                                                                                | 1.2.1.88                                                                                                                                                                                                                                                                                                       | L-glutamate gamma-semialdehyde dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 64.38 ± 23.31                                                                                                                                                                                                                                                                | 1.17.7.1                                                                                                                                                                                                                                                                                                       | synthase (ferredoxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 64.62 ± 38.49                                                                                                                                                                                                                                                                | 1.2.99.5                                                                                                                                                                                                                                                                                                       | Formylmethanofuran dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 64.65 ± 41.06                                                                                                                                                                                                                                                                | 1.3.7.8                                                                                                                                                                                                                                                                                                        | Benzoyl-CoA reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 64.92 ± 22.70                                                                                                                                                                                                                                                                | 1.1.1.133                                                                                                                                                                                                                                                                                                      | dTDP-4-dehydrorhamnose reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 68.33 ± 28.58                                                                                                                                                                                                                                                                | 1.3.99.22                                                                                                                                                                                                                                                                                                      | Coproporphyrinogen dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 69.42 ± 34.45                                                                                                                                                                                                                                                                | 1.1.1.271                                                                                                                                                                                                                                                                                                      | GDP-L-fucose synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 69.50 ± 37.89                                                                                                                                                                                                                                                                | 1.1.1.38                                                                                                                                                                                                                                                                                                       | Malate dehydrogenase (oxaloacetate-decarboxylating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 71.46 ± 41.87                                                                                                                                                                                                                                                                | 1.18.1.2                                                                                                                                                                                                                                                                                                       | FerredoxinNADP(+) reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 72.31 ± 31.21                                                                                                                                                                                                                                                                | 1.3.1.14                                                                                                                                                                                                                                                                                                       | Dihydroorotate dehydrogenase (NAD(+))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                | 3-methyl-2-oxobutanoate dehydrogenase (2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 73.31 ± 22.93                                                                                                                                                                                                                                                                | 1.2.4.4                                                                                                                                                                                                                                                                                                        | methylpropanoyl-transferring)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 75.51 ± 22.55                                                                                                                                                                                                                                                                | 1.2.4.4                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74.00 ± 26.56                                                                                                                                                                                                                                                                | 1.17.1.8                                                                                                                                                                                                                                                                                                       | 4-hydroxy-tetrahydrodipicolinate reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 74.00 ± 26.56                                                                                                                                                                                                                                                                | 1.17.1.8                                                                                                                                                                                                                                                                                                       | 4-hydroxy-tetrahydrodipicolinate reductase<br>Phosphogluconate dehydrogenase (NAD(+)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 74.00 ± 26.56<br>74.60 ± 21.66                                                                                                                                                                                                                                               | 1.17.1.8<br>1.1.1.343                                                                                                                                                                                                                                                                                          | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)-dependent, decarboxylating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30                                                                                                                                                                                                                              | 1.17.1.8<br>1.1.1.343<br>1.8.4.11                                                                                                                                                                                                                                                                              | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05                                                                                                                                                                                                             | 1.17.1.8<br>1.1.1.343<br>1.8.4.11<br>1.13.12.16                                                                                                                                                                                                                                                                | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63                                                                                                                                                                                            | 1.17.1.8<br>1.1.1.343<br>1.8.4.11<br>1.13.12.16<br>1.1.1.267                                                                                                                                                                                                                                                   | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24                                                                                                                                                                           | 1.17.1.8<br>1.1.1.343<br>1.8.4.11<br>1.13.12.16<br>1.1.1.267<br>1.2.1.38                                                                                                                                                                                                                                       | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase                                                                                                                                                                                                                                                                                                                                                                                            |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81                                                                                                                                                          | 1.17.1.8<br>1.1.1.343<br>1.8.4.11<br>1.13.12.16<br>1.1.1.267<br>1.2.1.38<br>1.2.1.18                                                                                                                                                                                                                           | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating)                                                                                                                                                                                                                                                                                                                                          |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44                                                                                                                                         | 1.17.1.8<br>1.1.1.343<br>1.8.4.11<br>1.13.12.16<br>1.1.1.267<br>1.2.1.38<br>1.2.1.18<br>1.17.1.2                                                                                                                                                                                                               | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase                                                                                                                                                                                                                                                                                       |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44<br>81.12 ± 18.19                                                                                                                        | 1.17.1.8  1.1.1.343     1.8.4.11  1.13.12.16     1.1.1.267     1.2.1.38     1.2.1.18     1.17.1.2     1.1.1.193                                                                                                                                                                                                | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 5-amino-6-(5-phosphoribosylamino)uracil reductase                                                                                                                                                                                                                                     |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44<br>81.12 ± 18.19<br>81.68 ± 28.36                                                                                                       | 1.17.1.8  1.1.1.343     1.8.4.11  1.13.12.16     1.1.1.267     1.2.1.38     1.2.1.18     1.17.1.2  1.1.1.193     1.1.1.49                                                                                                                                                                                      | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 5-amino-6-(5-phosphoribosylamino)uracil reductase Glucose-6-phosphate dehydrogenase (NADP(+))                                                                                                                                                                                         |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44<br>81.12 ± 18.19<br>81.68 ± 28.36<br>82.46 ± 36.29                                                                                      | 1.17.1.8  1.1.1.343     1.8.4.11  1.13.12.16     1.1.1.267     1.2.1.38     1.2.1.18     1.17.1.2  1.1.1.193     1.1.1.49  1.12.99.6                                                                                                                                                                           | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 5-amino-6-(5-phosphoribosylamino)uracil reductase Glucose-6-phosphate dehydrogenase (NADP(+)) Hydrogenase (acceptor)                                                                                                                                                                  |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44<br>81.12 ± 18.19<br>81.68 ± 28.36<br>82.46 ± 36.29<br>84.77 ± 24.59                                                                     | 1.17.1.8  1.1.1.343     1.8.4.11  1.13.12.16     1.1.1.267     1.2.1.38     1.2.1.18     1.17.1.2  1.1.1.193     1.1.1.49  1.12.99.6  1.1.1.136                                                                                                                                                                | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 5-amino-6-(5-phosphoribosylamino)uracil reductase Glucose-6-phosphate dehydrogenase (NADP(+)) Hydrogenase (acceptor) UDP-N-acetylglucosamine 6-dehydrogenase                                                                                                                          |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44<br>81.12 ± 18.19<br>81.68 ± 28.36<br>82.46 ± 36.29<br>84.77 ± 24.59<br>84.92 ± 18.69                                                    | 1.17.1.8  1.1.1.343                                                                                                                                                                                                                                                                                            | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 5-amino-6-(5-phosphoribosylamino)uracil reductase Glucose-6-phosphate dehydrogenase (NADP(+)) Hydrogenase (acceptor) UDP-N-acetylglucosamine 6-dehydrogenase Glycerol-3-phosphate dehydrogenase (NAD(P)(+))                                                                           |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44<br>81.12 ± 18.19<br>81.68 ± 28.36<br>82.46 ± 36.29<br>84.77 ± 24.59<br>84.92 ± 18.69<br>84.96 ± 20.11                                   | 1.17.1.8  1.1.1.343     1.8.4.11  1.13.12.16     1.1.1.267     1.2.1.38     1.2.1.18     1.17.1.2  1.1.1.193     1.1.1.49  1.12.99.6  1.1.1.36     1.1.1.94  1.1.1.25                                                                                                                                          | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 5-amino-6-(5-phosphoribosylamino)uracil reductase Glucose-6-phosphate dehydrogenase (NADP(+)) Hydrogenase (acceptor) UDP-N-acetylglucosamine 6-dehydrogenase Glycerol-3-phosphate dehydrogenase (NAD(P)(+)) Shikimate dehydrogenase                                                   |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44<br>81.12 ± 18.19<br>81.68 ± 28.36<br>82.46 ± 36.29<br>84.77 ± 24.59<br>84.92 ± 18.69<br>84.96 ± 20.11<br>86.00 ± 29.76                  | 1.17.1.8  1.1.1.343     1.8.4.11  1.13.12.16     1.1.1.267     1.2.1.38     1.2.1.18     1.17.1.2  1.1.1.193     1.1.49     1.12.99.6  1.1.1.36     1.1.1.94     1.1.1.25  1.17.99.6                                                                                                                           | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 5-amino-6-(5-phosphoribosylamino)uracil reductase Glucose-6-phosphate dehydrogenase (NADP(+)) Hydrogenase (acceptor) UDP-N-acetylglucosamine 6-dehydrogenase Glycerol-3-phosphate dehydrogenase (NAD(P)(+)) Shikimate dehydrogenase Epoxyqueuosine reductase                          |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44<br>81.12 ± 18.19<br>81.68 ± 28.36<br>82.46 ± 36.29<br>84.77 ± 24.59<br>84.92 ± 18.69<br>84.96 ± 20.11<br>86.00 ± 29.76<br>88.48 ± 38.12 | 1.17.1.8  1.1.1.343     1.8.4.11  1.13.12.16     1.1.1.267     1.2.1.38     1.2.1.18     1.17.1.2  1.1.1.193     1.1.1.49  1.12.99.6  1.1.1.36     1.1.1.94     1.1.25  1.17.99.6  1.1.1.18                                                                                                                    | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 5-amino-6-(5-phosphoribosylamino)uracil reductase Glucose-6-phosphate dehydrogenase (NADP(+)) Hydrogenase (acceptor) UDP-N-acetylglucosamine 6-dehydrogenase Glycerol-3-phosphate dehydrogenase (NAD(P)(+)) Shikimate dehydrogenase Epoxyqueuosine reductase Inositol 2-dehydrogenase |
| 74.00 ± 26.56<br>74.60 ± 21.66<br>75.12 ± 17.30<br>75.46 ± 22.05<br>75.77 ± 33.63<br>76.20 ± 24.24<br>78.24 ± 28.81<br>80.96 ± 20.44<br>81.12 ± 18.19<br>81.68 ± 28.36<br>82.46 ± 36.29<br>84.77 ± 24.59<br>84.92 ± 18.69<br>84.96 ± 20.11<br>86.00 ± 29.76                  | 1.17.1.8  1.1.1.343     1.8.4.11  1.13.12.16     1.1.1.267     1.2.1.38     1.2.1.18     1.17.1.2  1.1.1.193     1.1.49     1.12.99.6  1.1.1.36     1.1.1.94     1.1.1.25  1.17.99.6                                                                                                                           | 4-hydroxy-tetrahydrodipicolinate reductase Phosphogluconate dehydrogenase (NAD(+)- dependent, decarboxylating) Peptide-methionine (S)-S-oxide reductase Nitronate monooxygenase 1-deoxy-D-xylulose-5-phosphate reductoisomerase N-acetyl-gamma-glutamyl-phosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 5-amino-6-(5-phosphoribosylamino)uracil reductase Glucose-6-phosphate dehydrogenase (NADP(+)) Hydrogenase (acceptor) UDP-N-acetylglucosamine 6-dehydrogenase Glycerol-3-phosphate dehydrogenase (NAD(P)(+)) Shikimate dehydrogenase Epoxyqueuosine reductase                          |
|                                                                                                                                                                                                                                                                              | 56.42 ± 15.78<br>56.54 ± 33.48<br>57.12 ± 33.59<br>58.96 ± 29.17<br>59.92 ± 30.74<br>59.92 ± 33.35<br>62.31 ± 26.78<br>62.76 ± 31.28<br>64.29 ± 31.27<br>64.38 ± 23.31<br>64.62 ± 38.49<br>64.65 ± 41.06<br>64.92 ± 22.70<br>68.33 ± 28.58<br>69.42 ± 34.45<br>69.50 ± 37.89<br>71.46 ± 41.87<br>72.31 ± 31.21 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 583 | 90.31 ± 43.53  | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)         |
|-----|----------------|-----------|-----------------------------------------------------|
| 584 | 90.95 ± 41.25  | 1.3.99.16 | Isoquinoline 1-oxidoreductase                       |
| 585 | 92.70 ± 27.16  | 1.2.1.70  | Glutamyl-tRNA reductase                             |
| 586 | 93.83 ± 44.60  | 1.6.99.3  | NADH dehydrogenase                                  |
| 587 | 95.58 ± 24.45  | 1.1.1.262 | 4-hydroxythreonine-4-phosphate dehydrogenase        |
| 588 | 95.84 ± 32.42  | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))    |
|     |                |           | 4-methylaminobutanoate oxidase (formaldehyde-       |
| 589 | 96.18 ± 45.00  | 1.5.3.19  | forming)                                            |
| 590 | 96.38 ± 69.29  | 1.11.1.6  | Catalase                                            |
| 591 | 96.50 ± 43.93  | 1.12.98.1 | Coenzyme F420 hydrogenase                           |
| 592 | 97.62 ± 42.28  | 1.7.99.1  | Hydroxylamine reductase                             |
| 593 | 98.00 ± 41.33  | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring)  |
| 594 | 98.23 ± 31.92  | 1.15.1.1  | Superoxide dismutase                                |
| 595 | 98.32 ± 35.88  | 1.12.1.2  | Hydrogen dehydrogenase                              |
| 596 | 98.58 ± 24.23  | 1.5.1.2   | Pyrroline-5-carboxylate reductase                   |
|     |                |           | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 597 | 99.96 ± 41.31  | 1.1.1.40  | (NADP(+))                                           |
| 598 | 100.46 ± 29.49 | 1.6.5.2   | NAD(P)H dehydrogenase (quinone)                     |
| 599 | 100.77 ± 30.99 | 1.1.1.26  | Glyoxylate reductase                                |
| 600 | 100.85 ± 34.91 | 1.1.1.103 | L-threonine 3-dehydrogenase                         |
|     |                |           |                                                     |

| Marine | cold seeps (7 me | tagenomes)       |                                                  |
|--------|------------------|------------------|--------------------------------------------------|
| row    | Avg.rank         | <b>EC</b> number | Oxidoreductase                                   |
| 601    | 1.57 ± 1.05      | 1.6.5.3          | NADH:ubiquinone reductase (H(+)-translocating)   |
| 602    | $3.43 \pm 3.92$  | 1.4.1.13         | Glutamate synthase (NADPH)                       |
| 603    | $5.00 \pm 3.74$  | 1.17.4.1         | Ribonucleoside-diphosphate reductase             |
| 604    | 13.86 ± 5.54     | 1.1.1.42         | Isocitrate dehydrogenase (NADP(+))               |
|        |                  |                  | Glyceraldehyde-3-phosphate dehydrogenase         |
| 605    | $15.14 \pm 3.00$ | 1.2.1.12         | (phosphorylating)                                |
| 606    | 17.57 ± 19.83    | 1.3.5.1          | Succinate dehydrogenase (quinone)                |
| 607    | 19.86 ± 35.65    | 1.7.99.4         | Nitrate reductase                                |
| 608    | 21.29 ± 11.70    | 1.1.1.100        | 3-oxoacyl-[acyl-carrier-protein] reductase       |
| 609    | 22.00 ± 15.37    | 1.2.4.1          | Pyruvate dehydrogenase (acetyl-transferring)     |
| 610    | 22.29 ± 22.40    | 1.2.1.2          | Formate dehydrogenase                            |
| 611    | 22.57 ± 13.53    | 1.11.1.15        | Peroxiredoxin                                    |
| 612    | $23.43 \pm 8.40$ | 1.1.1.22         | UDP-glucose 6-dehydrogenase                      |
| 613    | 24.86 ± 49.88    | 1.9.3.1          | Cytochrome-c oxidase                             |
| 614    | 25.43 ± 10.22    | 1.4.4.2          | Glycine dehydrogenase (aminomethyl-transferring) |
| 615    | 25.57 ± 9.16     | 1.1.1.205        | IMP dehydrogenase                                |
| 616    | 26.14 ± 7.77     | 1.1.1.95         | Phosphoglycerate dehydrogenase                   |
| 617    | 27.57 ± 16.04    | 1.3.99.22        | Coproporphyrinogen dehydrogenase                 |
| 618    | 29.00 ± 31.49    | 1.1.1.35         | 3-hydroxyacyl-CoA dehydrogenase                  |
| 619    | 29.00 ± 22.40    | 1.3.8.7          | Medium-chain acyl-CoA dehydrogenase              |

| 620 | 29.14 ± 7.16  | 1.1.1.3    | Homoserine dehydrogenase                            |
|-----|---------------|------------|-----------------------------------------------------|
| 621 | 30.14 ± 41.70 | 1.2.7.1    | Pyruvate synthase                                   |
| 622 | 32.86 ± 7.02  | 1.1.1.86   | Ketol-acid reductoisomerase (NADP(+))               |
| 623 | 33.43 ± 13.63 | 1.1.1.1    | Alcohol dehydrogenase                               |
| 624 | 33.86 ± 34.83 | 1.2.1.88   | L-glutamate gamma-semialdehyde dehydrogenase        |
| 625 | 36.57 ± 15.64 | 1.8.1.4    | Dihydrolipoyl dehydrogenase                         |
| 626 | 37.43 ± 46.86 | 1.2.7.3    | 2-oxoglutarate synthase                             |
| 627 | 37.43 ± 6.63  | 1.2.1.11   | Aspartate-semialdehyde dehydrogenase                |
| 628 | 38.00 ± 14.97 | 1.8.1.9    | Thioredoxin-disulfide reductase                     |
| 629 | 43.14 ± 14.71 | 1.4.3.16   | L-aspartate oxidase                                 |
| 630 | 43.14 ± 29.34 | 1.2.1.3    | Aldehyde dehydrogenase (NAD(+))                     |
| 631 | 43.14 ± 8.85  | 1.1.1.23   | Histidinol dehydrogenase                            |
| 632 | 43.71 ± 32.64 | 1.17.4.2   | Ribonucleoside-triphosphate reductase               |
| 633 | 44.86 ± 15.16 | 1.1.1.85   | 3-isopropylmalate dehydrogenase                     |
| 634 | 45.17 ± 22.19 | 1.1.99.1   | Choline dehydrogenase                               |
| 635 | 45.57 ± 11.60 | 1.2.1.41   | Glutamate-5-semialdehyde dehydrogenase              |
| 636 | 49.14 ± 29.77 | 1.1.3.15   | (S)-2-hydroxy-acid oxidase                          |
| 637 | 50.29 ± 55.16 | 1.4.1.2    | Glutamate dehydrogenase                             |
| 638 | 52.86 ± 25.75 | 1.8.1.8    | Protein-disulfide reductase                         |
|     |               |            | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 639 | 53.00 ± 27.11 | 1.1.1.40   | (NADP(+))                                           |
|     |               |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate        |
| 640 | 53.00 ± 19.33 | 1.17.7.1   | synthase (ferredoxin)                               |
| 641 | 56.29 ± 49.77 | 1.8.5.4    | Sulfide:quinone reductase                           |
| 642 | 57.43 ± 45.27 | 1.2.1.16   | Succinate-semialdehyde dehydrogenase (NAD(P)(+))    |
| 643 | 57.86 ± 24.30 | 1.13.12.16 | Nitronate monooxygenase                             |
| 644 | 58.29 ± 22.58 | 1.17.1.4   | Xanthine dehydrogenase                              |
| 645 | 58.71 ± 46.18 | 1.3.1.34   | 2,4-dienoyl-CoA reductase (NADPH)                   |
| 646 | 60.33 ± 26.30 | 1.7.2.4    | Nitrous-oxide reductase                             |
| 647 | 61.14 ± 21.91 | 1.4.1.4    | Glutamate dehydrogenase (NADP(+))                   |
| 648 | 62.14 ± 14.86 | 1.2.1.70   | Glutamyl-tRNA reductase                             |
| 649 | 62.57 ± 13.44 | 1.2.1.38   | N-acetyl-gamma-glutamyl-phosphate reductase         |
| 650 | 64.29 ± 16.29 | 1.5.1.5    | Methylenetetrahydrofolate dehydrogenase (NADP(+))   |
| 651 | 64.57 ± 37.14 | 1.7.1.15   | Nitrite reductase (NADH)                            |
| 652 | 65.57 ± 42.01 | 1.97.1.4   | [Formate-C-acetyltransferase]-activating enzyme     |
| 653 | 66.00 ± 48.23 | 1.2.4.2    | Oxoglutarate dehydrogenase (succinyl-transferring)  |
| 654 | 66.43 ± 15.97 | 1.1.1.267  | 1-deoxy-D-xylulose-5-phosphate reductoisomerase     |
| 655 | 68.71 ± 38.93 | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase            |
| 656 | 70.29 ± 55.63 | 1.6.1.2    | NAD(P)(+) transhydrogenase (Re/Si-specific)         |
| 657 | 71.43 ± 8.72  | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase  |
| 658 | 71.71 ± 19.95 | 1.3.8.1    | Short-chain acyl-CoA dehydrogenase                  |
| 659 | 72.71 ± 25.54 | 1.1.5.3    | Glycerol-3-phosphate dehydrogenase                  |
| 660 | 73.71 ± 23.02 | 1.5.5.1    | Electron-transferring-flavoprotein dehydrogenase    |

| 661 | 73.71 ± 45.62   | 1.11.1.5  | Cytochrome-c peroxidase                             |
|-----|-----------------|-----------|-----------------------------------------------------|
| 662 | 74.86 ± 25.45   | 1.6.99.3  | NADH dehydrogenase                                  |
| 663 | 75.86 ± 9.34    | 1.1.1.94  | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))      |
| 664 | 76.86 ± 9.45    | 1.3.1.12  | Prephenate dehydrogenase                            |
| 665 | 77.00 ± 62.05   | 1.3.99.16 | Isoquinoline 1-oxidoreductase                       |
| 666 | 77.00 ± 37.57   | 1.8.4.11  | Peptide-methionine (S)-S-oxide reductase            |
| 667 | 78.00 ± 32.72   | 1.1.1.37  | Malate dehydrogenase                                |
| 668 | 78.57 ± 35.27   | 1.2.1.18  | Malonate-semialdehyde dehydrogenase (acetylating)   |
| 669 | 78.71 ± 14.14   | 1.17.1.8  | 4-hydroxy-tetrahydrodipicolinate reductase          |
|     |                 |           | 3-methyl-2-oxobutanoate dehydrogenase (2-           |
| 670 | 78.86 ± 23.01   | 1.2.4.4   | methylpropanoyl-transferring)                       |
| 671 | 79.29 ± 12.67   | 1.1.1.262 | 4-hydroxythreonine-4-phosphate dehydrogenase        |
| 672 | 79.71 ± 15.21   | 1.1.1.25  | Shikimate dehydrogenase                             |
| 673 | 83.43 ± 10.72   | 1.1.1.193 | 5-amino-6-(5-phosphoribosylamino)uracil reductase   |
| 674 | 87.67 ± 50.14   | 1.1.5.4   | Malate dehydrogenase (quinone)                      |
| 675 | 88.57 ± 28.90   | 1.5.1.20  | Methylenetetrahydrofolate reductase (NAD(P)H)       |
| 676 | 88.86 ± 52.94   | 1.5.3.1   | Sarcosine oxidase                                   |
| 677 | 92.86 ± 35.74   | 1.6.5.5   | NADPH:quinone reductase                             |
| 678 | 93.14 ± 50.40   | 1.11.1.21 | Catalase peroxidase                                 |
| 679 | 94.14 ± 18.80   | 1.1.1.133 | dTDP-4-dehydrorhamnose reductase                    |
| 680 | 94.71 ± 106.44  | 1.8.1.2   | Assimilatory sulfite reductase (NADPH)              |
| 681 | 97.29 ± 15.84   | 1.3.1.98  | UDP-N-acetylmuramate dehydrogenase                  |
| 682 | 97.43 ± 25.80   | 1.15.1.1  | Superoxide dismutase                                |
| 683 | 98.14 ± 43.30   | 1.1.1.28  | D-lactate dehydrogenase                             |
| 684 | 100.43 ± 53.25  | 1.1.1.49  | Glucose-6-phosphate dehydrogenase (NADP(+))         |
| 685 | 100.43 ± 79.47  | 1.8.98.1  | CoBCoM heterodisulfide reductase                    |
| 686 | 100.86 ± 18.67  | 1.17.99.6 | Epoxyqueuosine reductase                            |
| 687 | 101.29 ± 38.60  | 1.1.1.38  | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 688 | 101.71 ± 59.47  | 1.3.5.2   | Dihydroorotate dehydrogenase (quinone)              |
| 689 | 101.86 ± 13.86  | 1.3.1.76  | Precorrin-2 dehydrogenase                           |
| 690 | 103.43 ± 23.82  | 1.5.1.2   | Pyrroline-5-carboxylate reductase                   |
|     |                 |           | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si-  |
| 691 | 103.86 ± 43.69  | 1.3.1.10  | specific)                                           |
| 692 | 104.86 ± 37.50  | 1.4.1.1   | Alanine dehydrogenase                               |
| 693 | 105.86 ± 67.61  | 1.2.1.43  | Formate dehydrogenase (NADP(+))                     |
| 694 | 106.57 ± 52.20  | 1.1.1.31  | 3-hydroxyisobutyrate dehydrogenase                  |
| 695 | 107.14 ± 55.98  | 1.21.98.1 | Cyclic dehypoxanthinyl futalosine synthase          |
| 696 | 107.57 ± 22.36  | 1.7.1.13  | PreQ(1) synthase                                    |
| 697 | 108.29 ± 40.64  | 1.2.1.8   | Betaine-aldehyde dehydrogenase                      |
| 698 | 110.14 ± 40.03  | 1.1.1.271 | GDP-L-fucose synthase                               |
| 699 | 110.33 ± 119.44 | 1.12.5.1  | Hydrogen:quinone oxidoreductase                     |
| 700 | 111.14 ± 21.52  | 1.18.1.2  | FerredoxinNADP(+) reductase                         |
|     |                 |           |                                                     |

#### Hydrothermal vents (20 metagenomes)

| (20 metagenomes) |                 |           |                                                     |  |
|------------------|-----------------|-----------|-----------------------------------------------------|--|
| row              | Avg.rank        | EC number | Oxidoreductase                                      |  |
| 701              | $1.00 \pm 0.00$ | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating)      |  |
| 702              | $3.50 \pm 1.36$ | 1.4.1.13  | Glutamate synthase (NADPH)                          |  |
| 703              | 4.85 ± 2.73     | 1.17.4.1  | Ribonucleoside-diphosphate reductase                |  |
| 704              | $9.85 \pm 9.13$ | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)        |  |
| 705              | 12.15 ± 21.24   | 1.9.3.1   | Cytochrome-c oxidase                                |  |
| 706              | 14.55 ± 15.36   | 1.3.5.1   | Succinate dehydrogenase (quinone)                   |  |
| 707              | 17.00 ± 10.48   | 1.8.1.4   | Dihydrolipoyl dehydrogenase                         |  |
| 708              | 17.55 ± 15.17   | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)    |  |
| 709              | 17.70 ± 7.46    | 1.1.1.205 | IMP dehydrogenase                                   |  |
| 710              | 21.80 ± 16.48   | 1.1.1.42  | Isocitrate dehydrogenase (NADP(+))                  |  |
| 711              | 22.05 ± 11.71   | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase          |  |
| 712              | 22.65 ± 7.98    | 1.8.1.9   | Thioredoxin-disulfide reductase                     |  |
| 713              | 25.25 ± 20.47   | 1.1.1.1   | Alcohol dehydrogenase                               |  |
| 714              | 25.90 ± 20.76   | 1.5.3.1   | Sarcosine oxidase                                   |  |
| 715              | 26.95 ± 17.02   | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                     |  |
| 716              | 27.10 ± 20.21   | 1.2.1.2   | Formate dehydrogenase                               |  |
| 717              | 30.00 ± 10.41   | 1.1.1.85  | 3-isopropylmalate dehydrogenase                     |  |
| 718              | 32.75 ± 16.20   | 1.1.1.95  | Phosphoglycerate dehydrogenase                      |  |
| 719              | 33.65 ± 35.71   | 1.2.7.3   | 2-oxoglutarate synthase                             |  |
| 720              | 34.45 ± 19.02   | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                     |  |
| 721              | 35.55 ± 27.56   | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)         |  |
| 722              | 35.65 ± 18.38   | 1.2.1.11  | Aspartate-semialdehyde dehydrogenase                |  |
| 723              | 36.75 ± 9.48    | 1.1.1.3   | Homoserine dehydrogenase                            |  |
| 724              | 37.80 ± 24.83   | 1.11.1.15 | Peroxiredoxin                                       |  |
| 725              | 37.95 ± 18.25   | 1.1.1.86  | Ketol-acid reductoisomerase (NADP(+))               |  |
| 726              | 38.10 ± 28.57   | 1.7.99.4  | Nitrate reductase                                   |  |
|                  |                 |           | Glyceraldehyde-3-phosphate dehydrogenase            |  |
| 727              | 38.15 ± 13.37   | 1.2.1.12  | (phosphorylating)                                   |  |
| 728              | 38.60 ± 42.53   | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)            |  |
| 729              | 38.75 ± 13.37   | 1.1.1.22  | UDP-glucose 6-dehydrogenase                         |  |
| 730              | 38.80 ± 18.42   | 1.5.1.5   | Methylenetetrahydrofolate dehydrogenase (NADP(+))   |  |
| 731              | 40.40 ± 17.75   | 1.1.1.23  | Histidinol dehydrogenase                            |  |
|                  |                 |           | Malate dehydrogenase (oxaloacetate-decarboxylating) |  |
| 732              | 41.00 ± 14.69   | 1.1.1.40  | (NADP(+))                                           |  |
| 733              | 47.25 ± 34.41   | 1.1.3.15  | (S)-2-hydroxy-acid oxidase                          |  |
| 734              | 47.85 ± 26.99   | 1.4.3.16  | L-aspartate oxidase                                 |  |
| 735              | 48.10 ± 40.44   | 1.5.8.4   | Dimethylglycine dehydrogenase                       |  |
| 736              | 48.15 ± 29.83   | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                 |  |
|                  |                 |           | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate        |  |
| 737              | 48.80 ± 27.93   | 1.17.7.1  | synthase (ferredoxin)                               |  |
|                  |                 |           |                                                     |  |

| 738 | 49.50 ± 22.13 | 1.1.1.37  | Malate dehydrogenase                               |
|-----|---------------|-----------|----------------------------------------------------|
| 739 | 54.25 ± 32.99 | 1.3.99.22 | Coproporphyrinogen dehydrogenase                   |
| 740 | 55.95 ± 21.70 | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
| 741 | 56.75 ± 31.64 | 1.1.1.267 | 1-deoxy-D-xylulose-5-phosphate reductoisomerase    |
| 742 | 56.75 ± 16.26 | 1.2.1.41  | Glutamate-5-semialdehyde dehydrogenase             |
| 743 | 57.40 ± 41.66 | 1.8.1.8   | Protein-disulfide reductase                        |
| 744 | 58.15 ± 21.68 | 1.4.1.1   | Alanine dehydrogenase                              |
| 745 | 58.35 ± 24.39 | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring) |
| 746 | 59.25 ± 26.82 | 1.2.1.88  | L-glutamate gamma-semialdehyde dehydrogenase       |
| 747 | 60.55 ± 55.39 | 1.8.99.2  | Adenylyl-sulfate reductase                         |
| 748 | 60.75 ± 21.61 | 1.2.1.70  | Glutamyl-tRNA reductase                            |
| 749 | 61.25 ± 51.74 | 1.8.5.4   | Sulfide:quinone reductase                          |
| 750 | 61.75 ± 19.42 | 1.8.4.11  | Peptide-methionine (S)-S-oxide reductase           |
| 751 | 61.75 ± 64.80 | 1.97.1.4  | [Formate-C-acetyltransferase]-activating enzyme    |
| 752 | 62.80 ± 33.74 | 1.17.1.4  | Xanthine dehydrogenase                             |
| 753 | 65.40 ± 29.17 | 1.6.5.5   | NADPH:quinone reductase                            |
| 754 | 66.40 ± 41.32 | 1.11.1.21 | Catalase peroxidase                                |
| 755 | 68.05 ± 18.14 | 1.17.1.2  | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
| 756 | 69.20 ± 26.89 | 1.1.99.1  | Choline dehydrogenase                              |
| 757 | 70.70 ± 36.72 | 1.1.1.31  | 3-hydroxyisobutyrate dehydrogenase                 |
|     |               |           | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si- |
| 758 | 71.05 ± 18.02 | 1.3.1.10  | specific)                                          |
| 759 | 72.45 ± 41.43 | 1.3.1.14  | Dihydroorotate dehydrogenase (NAD(+))              |
|     |               |           | 4-methylaminobutanoate oxidase (formaldehyde-      |
| 760 | 73.90 ± 42.86 | 1.5.3.19  | forming)                                           |
| 761 | 74.75 ± 16.12 | 1.5.1.20  | Methylenetetrahydrofolate reductase (NAD(P)H)      |
| 762 | 74.80 ± 20.49 | 1.1.1.94  | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))     |
| 763 | 75.40 ± 20.13 | 1.1.1.262 | 4-hydroxythreonine-4-phosphate dehydrogenase       |
| 764 | 76.80 ± 14.51 | 1.17.1.8  | 4-hydroxy-tetrahydrodipicolinate reductase         |
| 765 | 77.85 ± 24.77 | 1.1.1.193 | 5-amino-6-(5-phosphoribosylamino)uracil reductase  |
| 766 | 78.25 ± 48.77 | 1.7.1.15  | Nitrite reductase (NADH)                           |
| 767 | 78.35 ± 45.88 | 1.3.1.76  | Precorrin-2 dehydrogenase                          |
| 768 | 78.65 ± 33.66 | 1.2.1.18  | Malonate-semialdehyde dehydrogenase (acetylating)  |
| 769 | 78.80 ± 50.73 | 1.8.1.7   | Glutathione-disulfide reductase                    |
| 770 | 78.80 ± 30.51 | 1.5.5.1   | Electron-transferring-flavoprotein dehydrogenase   |
| 771 | 80.45 ± 19.32 | 1.1.1.25  | Shikimate dehydrogenase                            |
| 772 | 82.55 ± 45.28 | 1.2.7.8   | Indolepyruvate ferredoxin oxidoreductase           |
| 773 | 82.95 ± 24.22 | 1.5.1.2   | Pyrroline-5-carboxylate reductase                  |
| 774 | 85.15 ± 23.07 | 1.2.1.38  | N-acetyl-gamma-glutamyl-phosphate reductase        |
| 775 | 86.50 ± 26.38 | 1.3.1.12  | Prephenate dehydrogenase                           |
|     |               |           | 3-methyl-2-oxobutanoate dehydrogenase (2-          |
| 776 | 86.90 ± 42.24 | 1.2.4.4   | methylpropanoyl-transferring)                      |
| 777 | 90.65 ± 29.41 | 1.3.1.98  | UDP-N-acetylmuramate dehydrogenase                 |
|     |               |           |                                                    |

| 778 | 91.80 ± 69.13  | 1.2.7.1   | Pyruvate synthase                                 |
|-----|----------------|-----------|---------------------------------------------------|
| 779 | 92.75 ± 26.54  | 1.3.8.6   | Glutaryl-CoA dehydrogenase (ETF)                  |
| 780 | 93.30 ± 28.64  | 1.6.99.3  | NADH dehydrogenase                                |
| 781 | 94.10 ± 31.83  | 1.4.1.4   | Glutamate dehydrogenase (NADP(+))                 |
| 782 | 95.47 ± 46.12  | 1.3.5.4   | Fumarate reductase (quinol)                       |
| 783 | 95.50 ± 63.56  | 1.7.2.1   | Nitrite reductase (NO-forming)                    |
| 784 | 95.55 ± 51.66  | 1.1.5.2   | Quinoprotein glucose dehydrogenase (PQQ, quinone) |
| 785 | 95.70 ± 83.65  | 1.12.99.6 | Hydrogenase (acceptor)                            |
| 786 | 96.30 ± 32.94  | 1.4.1.3   | Glutamate dehydrogenase (NAD(P)(+))               |
| 787 | 97.05 ± 22.23  | 1.1.1.271 | GDP-L-fucose synthase                             |
| 788 | 97.35 ± 40.29  | 1.3.5.2   | Dihydroorotate dehydrogenase (quinone)            |
| 789 | 98.05 ± 24.57  | 1.8.4.12  | Peptide-methionine (R)-S-oxide reductase          |
| 790 | 98.50 ± 45.00  | 1.4.1.2   | Glutamate dehydrogenase                           |
| 791 | 100.10 ± 54.24 | 1.3.99.16 | Isoquinoline 1-oxidoreductase                     |
| 792 | 100.21 ± 49.61 | 1.10.2.2  | Quinolcytochrome-c reductase                      |
| 793 | 101.20 ± 40.19 | 1.1.5.3   | Glycerol-3-phosphate dehydrogenase                |
| 794 | 102.05 ± 50.95 | 1.18.1.2  | FerredoxinNADP(+) reductase                       |
| 795 | 103.60 ± 36.82 | 1.3.3.3   | Coproporphyrinogen oxidase                        |
| 796 | 105.75 ± 47.67 | 1.11.1.5  | Cytochrome-c peroxidase                           |
| 797 | 106.00 ± 95.01 | 1.8.99.3  | Hydrogensulfite reductase                         |
| 798 | 106.28 ± 60.86 | 1.8.7.1   | Assimilatory sulfite reductase (ferredoxin)       |
| 799 | 109.05 ± 27.79 | 1.15.1.1  | Superoxide dismutase                              |
| 800 | 109.47 ± 40.65 | 1.1.1.14  | L-iditol 2-dehydrogenase                          |
|     |                |           |                                                   |

## Oxygen minimum zone (18 metagenomes)

| row | Avg.rank        | <b>EC</b> number | Oxidoreductase                                   |
|-----|-----------------|------------------|--------------------------------------------------|
| 801 | $1.00 \pm 0.00$ | 1.6.5.3          | NADH:ubiquinone reductase (H(+)-translocating)   |
| 802 | 3.67 ± 2.08     | 1.17.4.1         | Ribonucleoside-diphosphate reductase             |
| 803 | 3.83 ± 0.96     | 1.4.1.13         | Glutamate synthase (NADPH)                       |
| 804 | 4.17 ± 1.67     | 1.5.3.1          | Sarcosine oxidase                                |
| 805 | 4.78 ± 1.08     | 1.9.3.1          | Cytochrome-c oxidase                             |
| 806 | 7.78 ± 2.74     | 1.2.1.3          | Aldehyde dehydrogenase (NAD(+))                  |
| 807 | 8.78 ± 3.98     | 1.1.1.100        | 3-oxoacyl-[acyl-carrier-protein] reductase       |
| 808 | 9.78 ± 3.34     | 1.5.8.4          | Dimethylglycine dehydrogenase                    |
| 809 | 10.11 ± 3.05    | 1.3.5.1          | Succinate dehydrogenase (quinone)                |
| 810 | 11.44 ± 10.04   | 1.7.99.4         | Nitrate reductase                                |
| 811 | 11.50 ± 2.03    | 1.2.1.2          | Formate dehydrogenase                            |
| 812 | 13.61 ± 2.93    | 1.1.1.35         | 3-hydroxyacyl-CoA dehydrogenase                  |
| 813 | 14.28 ± 2.53    | 1.4.4.2          | Glycine dehydrogenase (aminomethyl-transferring) |
| 814 | 14.56 ± 4.74    | 1.2.4.1          | Pyruvate dehydrogenase (acetyl-transferring)     |
| 815 | 14.61 ± 4.68    | 1.3.8.7          | Medium-chain acyl-CoA dehydrogenase              |
| 816 | 15.11 ± 4.32    | 1.1.1.1          | Alcohol dehydrogenase                            |

| 817 | 19.50 ± 10.58 | 1.1.99.1  | Choline dehydrogenase                               |
|-----|---------------|-----------|-----------------------------------------------------|
| 818 | 19.56 ± 3.30  | 1.1.1.95  | Phosphoglycerate dehydrogenase                      |
| 819 | 20.78 ± 5.98  | 1.17.1.4  | Xanthine dehydrogenase                              |
| 820 | 21.44 ± 2.61  | 1.8.1.4   | Dihydrolipoyl dehydrogenase                         |
| 821 | 21.50 ± 11.71 | 1.2.7.3   | 2-oxoglutarate synthase                             |
| 822 | 25.56 ± 8.53  | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring)  |
| 823 | 25.78 ± 3.05  | 1.1.1.205 | IMP dehydrogenase                                   |
|     |               |           | 4-methylaminobutanoate oxidase (formaldehyde-       |
| 824 | 26.94 ± 4.58  | 1.5.3.19  | forming)                                            |
| 825 | 27.78 ± 18.23 | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)         |
| 826 | 28.17 ± 4.81  | 1.1.1.42  | Isocitrate dehydrogenase (NADP(+))                  |
| 827 | 29.67 ± 20.10 | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)            |
| 828 | 30.72 ± 8.89  | 1.8.1.9   | Thioredoxin-disulfide reductase                     |
| 829 | 31.83 ± 10.07 | 1.2.1.88  | L-glutamate gamma-semialdehyde dehydrogenase        |
| 830 | 33.94 ± 13.68 | 1.1.1.31  | 3-hydroxyisobutyrate dehydrogenase                  |
| 831 | 36.78 ± 14.45 | 1.6.5.5   | NADPH:quinone reductase                             |
| 832 | 37.33 ± 8.57  | 1.1.1.22  | UDP-glucose 6-dehydrogenase                         |
| 833 | 38.00 ± 7.53  | 1.1.1.85  | 3-isopropylmalate dehydrogenase                     |
|     |               |           | Glyceraldehyde-3-phosphate dehydrogenase            |
| 834 | 39.33 ± 6.72  | 1.2.1.12  | (phosphorylating)                                   |
| 835 | 40.50 ± 12.91 | 1.8.99.2  | Adenylyl-sulfate reductase                          |
| 836 | 40.89 ± 7.80  | 1.11.1.15 | Peroxiredoxin                                       |
| 837 | 41.56 ± 7.27  | 1.1.1.3   | Homoserine dehydrogenase                            |
| 838 | 42.17 ± 5.59  | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))    |
| 839 | 42.33 ± 31.44 | 1.2.7.1   | Pyruvate synthase                                   |
| 840 | 44.39 ± 7.34  | 1.5.1.5   | Methylenetetrahydrofolate dehydrogenase (NADP(+))   |
| 841 | 44.72 ± 9.42  | 1.2.1.11  | Aspartate-semialdehyde dehydrogenase                |
| 842 | 45.00 ± 13.15 | 1.5.1.20  | Methylenetetrahydrofolate reductase (NAD(P)H)       |
| 843 | 45.56 ± 9.64  | 1.1.1.86  | Ketol-acid reductoisomerase (NADP(+))               |
| 844 | 46.83 ± 11.19 | 1.1.1.37  | Malate dehydrogenase                                |
| 845 | 48.28 ± 12.62 | 1.2.1.18  | Malonate-semialdehyde dehydrogenase (acetylating)   |
| 846 | 50.89 ± 8.69  | 1.5.5.1   | Electron-transferring-flavoprotein dehydrogenase    |
|     |               |           | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate        |
| 847 | 52.56 ± 8.05  | 1.17.7.1  | synthase (ferredoxin)                               |
| 848 | 52.83 ± 11.44 | 1.1.1.23  | Histidinol dehydrogenase                            |
| 849 | 53.39 ± 16.38 | 1.1.5.2   | Quinoprotein glucose dehydrogenase (PQQ, quinone)   |
| 850 | 54.39 ± 22.64 | 1.3.99.22 | Coproporphyrinogen dehydrogenase                    |
|     |               |           | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 851 | 55.67 ± 21.17 | 1.1.1.40  | (NADP(+))                                           |
| 852 | 57.22 ± 9.66  | 1.8.4.11  | Peptide-methionine (S)-S-oxide reductase            |
| 853 | 57.56 ± 24.99 | 1.14.15.7 | Choline monooxygenase                               |
| 854 | 59.39 ± 12.31 | 1.4.99.1  | 1.4.99.6                                            |
| 855 | 59.56 ± 9.43  | 1.2.1.41  | Glutamate-5-semialdehyde dehydrogenase              |
|     |               |           |                                                     |

| 856 | 60.17 ± 17.45  | 1.1.3.15   | (S)-2-hydroxy-acid oxidase                         |
|-----|----------------|------------|----------------------------------------------------|
| 857 | 60.89 ± 17.99  | 1.2.1.70   | Glutamyl-tRNA reductase                            |
| 858 | 62.89 ± 10.76  | 1.4.1.1    | Alanine dehydrogenase                              |
|     |                |            | 3-methyl-2-oxobutanoate dehydrogenase (2-          |
| 859 | 63.89 ± 16.58  | 1.2.4.4    | methylpropanoyl-transferring)                      |
| 860 | 64.00 ± 16.62  | 1.1.1.308  | Sulfopropanediol 3-dehydrogenase                   |
| 861 | 64.22 ± 20.17  | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase           |
| 862 | 64.28 ± 9.53   | 1.1.1.267  | 1-deoxy-D-xylulose-5-phosphate reductoisomerase    |
| 863 | 66.50 ± 26.83  | 1.8.1.8    | Protein-disulfide reductase                        |
| 864 | 67.50 ± 8.78   | 1.1.1.94   | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))     |
| 865 | 69.17 ± 10.95  | 1.1.1.25   | Shikimate dehydrogenase                            |
| 866 | 70.11 ± 11.55  | 1.3.8.6    | Glutaryl-CoA dehydrogenase (ETF)                   |
| 867 | 72.61 ± 34.43  | 1.6.99.3   | NADH dehydrogenase                                 |
| 868 | 72.67 ± 11.58  | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
| 869 | 73.56 ± 12.50  | 1.1.1.193  | 5-amino-6-(5-phosphoribosylamino)uracil reductase  |
| 870 | 74.11 ± 26.61  | 1.5.8.1    | Dimethylamine dehydrogenase                        |
| 871 | 74.17 ± 32.54  | 1.7.2.1    | Nitrite reductase (NO-forming)                     |
| 872 | 75.22 ± 19.07  | 1.1.5.3    | Glycerol-3-phosphate dehydrogenase                 |
|     |                |            | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si- |
| 873 | 77.56 ± 14.83  | 1.3.1.10   | specific)                                          |
| 874 | 77.72 ± 10.50  | 1.1.1.133  | dTDP-4-dehydrorhamnose reductase                   |
| 875 | 77.78 ± 28.42  | 1.8.1.2    | Assimilatory sulfite reductase (NADPH)             |
| 876 | 78.28 ± 18.48  | 1.1.2.3    | L-lactate dehydrogenase (cytochrome)               |
| 877 | 79.06 ± 13.96  | 1.2.1.38   | N-acetyl-gamma-glutamyl-phosphate reductase        |
| 878 | 80.61 ± 15.11  | 1.1.1.262  | 4-hydroxythreonine-4-phosphate dehydrogenase       |
| 879 | 80.72 ± 13.48  | 1.3.1.98   | UDP-N-acetylmuramate dehydrogenase                 |
| 880 | 81.78 ± 11.20  | 1.3.1.12   | Prephenate dehydrogenase                           |
| 881 | 82.17 ± 31.65  | 1.14.11.17 | Taurine dioxygenase                                |
| 882 | 83.56 ± 25.55  | 1.4.3.16   | L-aspartate oxidase                                |
| 883 | 85.00 ± 27.68  | 1.3.1.34   | 2,4-dienoyl-CoA reductase (NADPH)                  |
| 884 | 86.33 ± 14.62  | 1.4.7.1    | Glutamate synthase (ferredoxin)                    |
| 885 | 88.67 ± 17.53  | 1.1.1.271  | GDP-L-fucose synthase                              |
| 886 | 91.39 ± 19.35  | 1.3.1.14   | Dihydroorotate dehydrogenase (NAD(+))              |
| 887 | 93.39 ± 19.92  | 1.13.12.16 | Nitronate monooxygenase                            |
| 888 | 94.06 ± 27.67  | 1.1.1.108  | Carnitine 3-dehydrogenase                          |
| 889 | 94.56 ± 10.49  | 1.1.2.4    | D-lactate dehydrogenase (cytochrome)               |
| 890 | 94.61 ± 13.04  | 1.17.1.8   | 4-hydroxy-tetrahydrodipicolinate reductase         |
| 891 | 95.67 ± 28.03  | 1.18.1.2   | FerredoxinNADP(+) reductase                        |
| 892 | 97.28 ± 13.44  | 1.5.1.2    | Pyrroline-5-carboxylate reductase                  |
| 893 | 97.94 ± 22.91  | 1.3.1.76   | Precorrin-2 dehydrogenase                          |
| 894 | 100.33 ± 36.45 | 1.14.13.22 | Cyclohexanone monooxygenase                        |
| 895 | 102.06 ± 16.54 | 1.3.8.1    | Short-chain acyl-CoA dehydrogenase                 |
| 896 | 102.06 ± 26.00 | 1.4.1.3    | Glutamate dehydrogenase (NAD(P)(+))                |

| 897 | 103.39 ± 23.17 | 1.14.11.18  | Phytanoyl-CoA dioxygenase         |
|-----|----------------|-------------|-----------------------------------|
| 898 | 104.17 ± 20.15 | 1.4.1.4     | Glutamate dehydrogenase (NADP(+)) |
| 899 | 105.83 ± 28.89 | 1.14.13.148 | Trimethylamine monooxygenase      |
| 900 | 108.67 ± 21.63 | 1.14.11.1   | Gamma-butyrobetaine dioxygenase   |

#### Marine photic zone (18 metagenomes)

| row | Avg.rank        | EC number | Oxidoreductase                                      |
|-----|-----------------|-----------|-----------------------------------------------------|
| 901 | $1.00 \pm 0.00$ | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating)      |
| 902 | $2.39 \pm 1.01$ | 1.17.4.1  | Ribonucleoside-diphosphate reductase                |
| 903 | $3.17 \pm 0.60$ | 1.4.1.13  | Glutamate synthase (NADPH)                          |
| 904 | 4.33 ± 1.45     | 1.5.3.1   | Sarcosine oxidase                                   |
| 905 | $4.67 \pm 1.00$ | 1.9.3.1   | Cytochrome-c oxidase                                |
| 906 | $7.50 \pm 2.01$ | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)        |
| 907 | 7.50 ± 1.67     | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                     |
| 908 | $8.72 \pm 2.21$ | 1.3.5.1   | Succinate dehydrogenase (quinone)                   |
| 909 | 10.39 ± 1.95    | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase          |
| 910 | 10.50 ± 2.59    | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                 |
| 911 | 11.06 ± 4.94    | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)    |
| 912 | 11.89 ± 3.63    | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)         |
| 913 | 14.50 ± 2.95    | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring)  |
| 914 | 16.28 ± 6.09    | 1.1.99.1  | Choline dehydrogenase                               |
| 915 | 16.44 ± 3.40    | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                     |
| 916 | 16.61 ± 4.47    | 1.5.8.4   | Dimethylglycine dehydrogenase                       |
| 917 | 17.17 ± 2.22    | 1.8.1.4   | Dihydrolipoyl dehydrogenase                         |
| 918 | 17.78 ± 4.87    | 1.2.1.2   | Formate dehydrogenase                               |
| 919 | 19.00 ± 6.89    | 1.8.1.9   | Thioredoxin-disulfide reductase                     |
| 920 | 20.44 ± 2.67    | 1.1.1.95  | Phosphoglycerate dehydrogenase                      |
| 921 | 20.67 ± 5.35    | 1.1.1.1   | Alcohol dehydrogenase                               |
| 922 | 23.72 ± 3.56    | 1.1.1.42  | Isocitrate dehydrogenase (NADP(+))                  |
|     |                 |           | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 923 | 25.17 ± 4.97    | 1.1.1.40  | (NADP(+))                                           |
| 924 | 27.56 ± 3.50    | 1.1.1.205 | IMP dehydrogenase                                   |
| 925 | 28.61 ± 5.06    | 1.1.1.31  | 3-hydroxyisobutyrate dehydrogenase                  |
| 926 | 28.94 ± 7.46    | 1.6.5.5   | NADPH:quinone reductase                             |
|     |                 |           | Glyceraldehyde-3-phosphate dehydrogenase            |
| 927 | 29.89 ± 3.98    | 1.2.1.12  | (phosphorylating)                                   |
| 928 | 29.94 ± 6.33    | 1.1.1.22  | UDP-glucose 6-dehydrogenase                         |
| 929 | 33.67 ± 4.89    | 1.1.1.85  | 3-isopropylmalate dehydrogenase                     |
| 930 | 34.33 ± 4.52    | 1.1.1.3   | Homoserine dehydrogenase                            |
| 931 | 34.50 ± 13.76   | 1.1.2.3   | L-lactate dehydrogenase (cytochrome)                |
|     |                 |           | 4-methylaminobutanoate oxidase (formaldehyde-       |
| 932 | 36.11 ± 10.17   | 1.5.3.19  | forming)                                            |
|     |                 |           |                                                     |

|     |               |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate       |
|-----|---------------|------------|----------------------------------------------------|
| 933 | 36.22 ± 8.19  | 1.17.7.1   | synthase (ferredoxin)                              |
| 934 | 37.44 ± 15.32 | 1.2.99.2   | Carbon-monoxide dehydrogenase (acceptor)           |
| 935 | 37.50 ± 20.54 | 1.11.1.21  | Catalase peroxidase                                |
| 936 | 38.89 ± 6.14  | 1.1.1.86   | Ketol-acid reductoisomerase (NADP(+))              |
| 937 | 39.94 ± 10.76 | 1.11.1.15  | Peroxiredoxin                                      |
| 938 | 40.94 ± 4.72  | 1.2.1.11   | Aspartate-semialdehyde dehydrogenase               |
| 939 | 42.11 ± 6.51  | 1.5.5.1    | Electron-transferring-flavoprotein dehydrogenase   |
| 940 | 43.56 ± 6.11  | 1.2.1.16   | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
| 941 | 43.83 ± 3.67  | 1.5.1.5    | Methylenetetrahydrofolate dehydrogenase (NADP(+))  |
| 942 | 46.56 ± 12.54 | 1.2.1.41   | Glutamate-5-semialdehyde dehydrogenase             |
| 943 | 46.89 ± 23.75 | 1.4.7.1    | Glutamate synthase (ferredoxin)                    |
| 944 | 48.22 ± 10.87 | 1.8.4.11   | Peptide-methionine (S)-S-oxide reductase           |
| 945 | 49.22 ± 6.85  | 1.1.1.23   | Histidinol dehydrogenase                           |
| 946 | 49.33 ± 7.34  | 1.1.1.37   | Malate dehydrogenase                               |
| 947 | 49.72 ± 17.86 | 1.17.1.4   | Xanthine dehydrogenase                             |
| 948 | 50.39 ± 12.60 | 1.3.99.26  | All-trans-zeta-carotene desaturase                 |
|     |               |            | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si- |
| 949 | 50.67 ± 7.72  | 1.3.1.10   | specific)                                          |
| 950 | 50.89 ± 9.10  | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
| 951 | 51.00 ± 15.17 | 1.2.1.18   | Malonate-semialdehyde dehydrogenase (acetylating)  |
| 952 | 54.22 ± 9.72  | 1.3.5.2    | Dihydroorotate dehydrogenase (quinone)             |
| 953 | 56.28 ± 9.92  | 1.1.1.193  | 5-amino-6-(5-phosphoribosylamino)uracil reductase  |
| 954 | 58.06 ± 16.48 | 1.6.99.3   | NADH dehydrogenase                                 |
| 955 | 59.00 ± 25.02 | 1.2.7.3    | 2-oxoglutarate synthase                            |
| 956 | 60.44 ± 23.15 | 1.2.1.88   | L-glutamate gamma-semialdehyde dehydrogenase       |
| 957 | 61.39 ± 23.07 | 1.1.5.2    | Quinoprotein glucose dehydrogenase (PQQ, quinone)  |
| 958 | 61.94 ± 28.82 | 1.8.99.2   | Adenylyl-sulfate reductase                         |
| 959 | 62.17 ± 11.88 | 1.4.1.1    | Alanine dehydrogenase                              |
| 960 | 63.44 ± 10.18 | 1.1.1.267  | 1-deoxy-D-xylulose-5-phosphate reductoisomerase    |
| 961 | 63.67 ± 8.46  | 1.5.1.20   | Methylenetetrahydrofolate reductase (NAD(P)H)      |
| 962 | 64.78 ± 9.83  | 1.1.1.262  | 4-hydroxythreonine-4-phosphate dehydrogenase       |
| 963 | 65.28 ± 12.40 | 1.4.99.1   | 1.4.99.6                                           |
| 964 | 65.83 ± 13.47 | 1.3.3.3    | Coproporphyrinogen oxidase                         |
| 965 | 66.56 ± 10.95 | 1.3.1.98   | UDP-N-acetylmuramate dehydrogenase                 |
| 966 | 67.17 ± 10.30 | 1.1.1.25   | Shikimate dehydrogenase                            |
| 967 | 67.61 ± 13.80 | 1.14.11.17 | Taurine dioxygenase                                |
| 968 | 70.94 ± 13.55 | 1.1.1.308  | Sulfopropanediol 3-dehydrogenase                   |
| 969 | 71.50 ± 27.07 | 1.1.5.3    | Glycerol-3-phosphate dehydrogenase                 |
| 970 | 71.83 ± 17.31 | 1.1.2.4    | D-lactate dehydrogenase (cytochrome)               |
| 971 | 71.94 ± 11.40 | 1.2.1.38   | N-acetyl-gamma-glutamyl-phosphate reductase        |
| 972 | 73.17 ± 14.91 | 1.3.99.22  | Coproporphyrinogen dehydrogenase                   |
| 973 | 74.33 ± 11.65 | 1.17.1.8   | 4-hydroxy-tetrahydrodipicolinate reductase         |

| 974  | 75.50 ± 10.37  | 1.1.1.94   | Glycerol-3-phosphate dehydrogenase (NAD(P)(+)) |
|------|----------------|------------|------------------------------------------------|
| 975  | 76.44 ± 17.65  | 1.13.12.16 | Nitronate monooxygenase                        |
| 976  | 79.50 ± 13.15  | 1.4.3.16   | L-aspartate oxidase                            |
| 977  | 79.61 ± 19.34  | 1.14.13.22 | Cyclohexanone monooxygenase                    |
| 978  | 80.67 ± 27.29  | 1.14.15.7  | Choline monooxygenase                          |
| 979  | 81.06 ± 19.29  | 1.1.1.271  | GDP-L-fucose synthase                          |
| 980  | 83.78 ± 10.05  | 1.5.1.2    | Pyrroline-5-carboxylate reductase              |
| 981  | 84.06 ± 16.21  | 1.3.8.6    | Glutaryl-CoA dehydrogenase (ETF)               |
|      |                |            | 3-methyl-2-oxobutanoate dehydrogenase (2-      |
| 982  | 85.50 ± 17.91  | 1.2.4.4    | methylpropanoyl-transferring)                  |
|      |                |            | Ferredoxin:protochlorophyllide reductase (ATP- |
| 983  | 87.83 ± 54.69  | 1.3.7.7    | dependent)                                     |
| 984  | 87.83 ± 11.10  | 1.3.1.12   | Prephenate dehydrogenase                       |
| 985  | 89.17 ± 11.79  | 1.11.1.9   | Glutathione peroxidase                         |
| 986  | 90.67 ± 21.97  | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase       |
| 987  | 91.17 ± 13.24  | 1.4.3.5    | Pyridoxal 5'-phosphate synthase                |
| 988  | 92.28 ± 22.75  | 1.8.1.8    | Protein-disulfide reductase                    |
| 989  | 93.50 ± 20.51  | 1.8.4.12   | Peptide-methionine (R)-S-oxide reductase       |
| 990  | 93.83 ± 22.03  | 1.1.3.15   | (S)-2-hydroxy-acid oxidase                     |
| 991  | 93.83 ± 12.68  | 1.2.1.70   | Glutamyl-tRNA reductase                        |
| 992  | 95.00 ± 24.78  | 1.1.1.49   | Glucose-6-phosphate dehydrogenase (NADP(+))    |
| 993  | 96.94 ± 12.15  | 1.1.1.26   | Glyoxylate reductase                           |
| 994  | 98.22 ± 18.88  | 1.15.1.1   | Superoxide dismutase                           |
| 995  | 99.39 ± 19.82  | 1.20.4.1   | Arsenate reductase (glutaredoxin)              |
| 996  | 101.11 ± 15.44 | 1.17.99.6  | Epoxyqueuosine reductase                       |
| 997  | 103.28 ± 25.51 | 1.14.11.1  | Gamma-butyrobetaine dioxygenase                |
| 998  | 103.78 ± 10.60 | 1.1.1.133  | dTDP-4-dehydrorhamnose reductase               |
|      |                |            | Phosphogluconate dehydrogenase (NAD(+)-        |
| 999  | 104.00 ± 26.26 | 1.1.1.343  | dependent, decarboxylating)                    |
| 1000 | 106.72 ± 28.14 | 1.2.1.8    | Betaine-aldehyde dehydrogenase                 |
|      |                |            |                                                |

# Mangrove sediment (10 metagenomes)

| row  | Avg.rank        | <b>EC</b> number | Oxidoreductase                                 |
|------|-----------------|------------------|------------------------------------------------|
| 1001 | $1.10 \pm 0.30$ | 1.6.5.3          | NADH:ubiquinone reductase (H(+)-translocating) |
| 1002 | 4.40 ± 6.55     | 1.8.98.1         | CoBCoM heterodisulfide reductase               |
| 1003 | 5.40 ± 3.83     | 1.17.4.1         | Ribonucleoside-diphosphate reductase           |
| 1004 | 5.50 ± 2.20     | 1.4.1.13         | Glutamate synthase (NADPH)                     |
| 1005 | 6.00 ± 1.67     | 1.1.1.100        | 3-oxoacyl-[acyl-carrier-protein] reductase     |
| 1006 | $6.80 \pm 2.60$ | 1.2.7.3          | 2-oxoglutarate synthase                        |
| 1007 | 8.00 ± 3.52     | 1.2.1.2          | Formate dehydrogenase                          |
| 1008 | $8.10 \pm 2.84$ | 1.2.7.1          | Pyruvate synthase                              |
| 1009 | 9.60 ± 12.69    | 1.2.7.5          | Aldehyde ferredoxin oxidoreductase             |

| 1010 | 10.70 ± 1.85  | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)        |
|------|---------------|-----------|-----------------------------------------------------|
| 1011 | 10.70 ± 1.95  | 1.1.1.1   | Alcohol dehydrogenase                               |
| 1012 | 13.00 ± 8.58  | 1.9.3.1   | Cytochrome-c oxidase                                |
| 1013 | 14.20 ± 3.74  | 1.8.1.4   | •                                                   |
| 1014 | 14.30 ± 1.27  | 1.3.5.1   | Succinate dehydrogenase (quinone)                   |
| 1015 | 16.10 ± 2.81  | 1.1.1.95  | Phosphoglycerate dehydrogenase                      |
| 1016 | 16.80 ± 9.81  | 1.97.1.4  | [Formate-C-acetyltransferase]-activating enzyme     |
| 1017 | 18.40 ± 4.94  | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                 |
| 1018 | 18.60 ± 4.57  | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)    |
| 1019 | 18.70 ± 4.15  | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)            |
| 1020 | 20.90 ± 2.84  | 1.8.1.9   | Thioredoxin-disulfide reductase                     |
| 1021 | 22.30 ± 7.11  | 1.2.7.8   | Indolepyruvate ferredoxin oxidoreductase            |
| 1022 | 24.00 ± 7.21  | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                     |
| 1023 | 25.90 ± 8.97  | 1.17.1.4  | Xanthine dehydrogenase                              |
| 1024 | 28.60 ± 6.12  | 1.1.1.205 | IMP dehydrogenase                                   |
| 1025 | 31.00 ± 13.02 | 1.3.1.34  | 2,4-dienoyl-CoA reductase (NADPH)                   |
| 1026 | 32.50 ± 8.59  | 1.11.1.21 | Catalase peroxidase                                 |
|      |               |           | Glyceraldehyde-3-phosphate dehydrogenase            |
| 1027 | 32.90 ± 6.86  | 1.2.1.12  | (phosphorylating)                                   |
| 1028 | 33.70 ± 6.63  | 1.6.5.5   | NADPH:quinone reductase                             |
| 1029 | 33.70 ± 6.03  | 1.1.5.3   | Glycerol-3-phosphate dehydrogenase                  |
| 1030 | 35.50 ± 14.10 | 1.5.3.1   | Sarcosine oxidase                                   |
| 1031 | 36.40 ± 8.78  | 1.1.1.22  | UDP-glucose 6-dehydrogenase                         |
| 1032 | 36.40 ± 12.69 | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring)  |
| 1033 | 37.10 ± 18.17 | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                     |
| 1034 | 37.70 ± 14.48 | 1.1.3.15  | (S)-2-hydroxy-acid oxidase                          |
| 1035 | 37.80 ± 6.71  | 1.11.1.15 | Peroxiredoxin                                       |
| 1036 | 39.80 ± 7.67  | 1.2.1.88  | L-glutamate gamma-semialdehyde dehydrogenase        |
| 1037 | 40.70 ± 17.46 | 1.3.99.16 | Isoquinoline 1-oxidoreductase                       |
| 1038 | 41.00 ± 17.74 | 1.7.99.4  | Nitrate reductase                                   |
| 1039 | 41.10 ± 16.43 | 1.3.99.22 | Coproporphyrinogen dehydrogenase                    |
| 1040 | 41.80 ± 10.32 | 1.5.1.20  | Methylenetetrahydrofolate reductase (NAD(P)H)       |
| 1041 | 45.60 ± 15.39 | 1.1.1.42  | Isocitrate dehydrogenase (NADP(+))                  |
| 1042 | 48.20 ± 18.39 | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)         |
| 1043 | 50.30 ± 10.28 | 1.1.1.85  | 3-isopropylmalate dehydrogenase                     |
| 1044 | 50.60 ± 8.98  | 1.1.1.3   | Homoserine dehydrogenase                            |
| 1045 | 54.00 ± 11.32 | 1.1.1.157 | 3-hydroxybutyryl-CoA dehydrogenase                  |
| 1046 | 55.00 ± 12.30 | 1.4.1.1   | Alanine dehydrogenase                               |
| 1047 | 55.60 ± 10.13 | 1.4.3.16  | L-aspartate oxidase                                 |
| 1048 | 55.70 ± 43.06 | 1.2.7.4   | Carbon-monoxide dehydrogenase (ferredoxin)          |
| 1049 | 56.90 ± 16.52 | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))    |
| 1050 | 57.50 ± 17.10 | 1.3.8.1   | Short-chain acyl-CoA dehydrogenase                  |
| 1051 | 59.20 ± 24.53 | 1.1.1.40  | Malate dehydrogenase (oxaloacetate-decarboxylating) |

|      |               |            | (NADP(+))                                          |
|------|---------------|------------|----------------------------------------------------|
| 1052 | 59.90 ± 26.82 | 1.12.99.6  | Hydrogenase (acceptor)                             |
| 1053 | 61.40 ± 15.33 | 1.4.1.4    | Glutamate dehydrogenase (NADP(+))                  |
| 1054 | 62.40 ± 32.93 | 1.17.4.2   | Ribonucleoside-triphosphate reductase              |
| 1055 | 62.70 ± 11.51 | 1.8.4.11   | Peptide-methionine (S)-S-oxide reductase           |
| 1056 | 63.00 ± 32.80 | 1.1.1.14   | L-iditol 2-dehydrogenase                           |
| 1057 | 63.50 ± 35.10 | 1.8.99.2   | Adenylyl-sulfate reductase                         |
| 1058 | 64.40 ± 33.82 | 1.2.1.43   | Formate dehydrogenase (NADP(+))                    |
| 1059 | 64.50 ± 17.43 | 1.1.1.23   | Histidinol dehydrogenase                           |
| 1060 | 64.70 ± 8.63  | 1.2.1.11   | Aspartate-semialdehyde dehydrogenase               |
| 1061 | 67.10 ± 39.49 | 1.3.7.8    | Benzoyl-CoA reductase                              |
| 1062 | 67.30 ± 14.28 | 1.5.1.5    | Methylenetetrahydrofolate dehydrogenase (NADP(+))  |
| 1063 | 67.40 ± 23.99 | 1.12.1.2   | Hydrogen dehydrogenase                             |
| 1064 | 67.40 ± 11.72 | 1.4.1.3    | Glutamate dehydrogenase (NAD(P)(+))                |
| 1065 | 68.00 ± 20.74 | 1.8.1.8    | Protein-disulfide reductase                        |
| 1066 | 69.40 ± 6.34  | 1.1.1.86   | Ketol-acid reductoisomerase (NADP(+))              |
| 1067 | 70.70 ± 10.15 | 1.1.1.133  | dTDP-4-dehydrorhamnose reductase                   |
| 1068 | 72.90 ± 19.23 | 1.1.1.49   | Glucose-6-phosphate dehydrogenase (NADP(+))        |
| 1069 | 74.10 ± 26.12 | 1.4.1.2    | Glutamate dehydrogenase                            |
| 1070 | 74.70 ± 17.46 | 1.12.1.3   | Hydrogen dehydrogenase (NADP(+))                   |
|      |               |            | 3-methyl-2-oxobutanoate dehydrogenase (2-          |
| 1071 | 76.00 ± 28.15 | 1.2.4.4    | methylpropanoyl-transferring)                      |
| 1072 | 76.90 ± 13.56 | 1.1.1.18   | Inositol 2-dehydrogenase                           |
|      |               |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate       |
| 1073 | 77.60 ± 15.03 | 1.17.7.1   | synthase (ferredoxin)                              |
| 1074 | 79.20 ± 26.63 | 1.6.99.3   | NADH dehydrogenase                                 |
| 1075 | 79.90 ± 31.62 | 1.8.99.3   | Hydrogensulfite reductase                          |
| 1076 | 80.20 ± 12.16 | 1.2.1.41   | Glutamate-5-semialdehyde dehydrogenase             |
| 1077 | 80.70 ± 16.03 | 1.1.1.169  | 2-dehydropantoate 2-reductase                      |
| 1078 | 81.60 ± 30.76 | 1.11.1.5   | •                                                  |
| 1079 | 81.70 ± 20.50 | 1.13.12.16 | Nitronate monooxygenase                            |
| 1080 | 82.30 ± 28.01 | 1.4.7.1    | Glutamate synthase (ferredoxin)                    |
|      |               |            | Magnesium-protoporphyrin IX monomethyl ester       |
| 1081 | 82.30 ± 27.46 | 1.14.13.81 | (oxidative) cyclase                                |
| 1082 | 84.10 ± 12.15 | 1.1.1.37   | Malate dehydrogenase                               |
| 1083 | 84.60 ± 14.46 | 1.1.1.94   | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))     |
| 1084 | 85.00 ± 12.50 | 1.1.1.25   | Shikimate dehydrogenase                            |
| 1085 | 85.40 ± 16.44 | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
| 1086 | 86.90 ± 17.17 | 1.1.1.271  | GDP-L-fucose synthase                              |
| 1087 | 88.70 ± 13.83 | 1.17.99.6  | Epoxyqueuosine reductase                           |
| 1088 | 89.70 ± 21.50 | 1.1.1.31   | 3-hydroxyisobutyrate dehydrogenase                 |
| 1089 | 90.20 ± 21.36 | 1.8.5.4    | Sulfide:quinone reductase                          |
| 1090 | 90.80 ± 32.62 | 1.3.5.4    | Fumarate reductase (quinol)                        |

| 1091 | 90.90 ± 15.86 | 1.1.1.193 | 5-amino-6-(5-phosphoribosylamino)uracil reductase |
|------|---------------|-----------|---------------------------------------------------|
|      |               |           | Phosphogluconate dehydrogenase (NAD(+)-           |
| 1092 | 92.00 ± 8.52  | 1.1.1.343 | dependent, decarboxylating)                       |
| 1093 | 92.70 ± 16.39 | 1.18.1.2  | FerredoxinNADP(+) reductase                       |
| 1094 | 94.30 ± 11.03 | 1.1.1.91  | Aryl-alcohol dehydrogenase (NADP(+))              |
| 1095 | 94.30 ± 13.10 | 1.1.1.267 | 1-deoxy-D-xylulose-5-phosphate reductoisomerase   |
| 1096 | 96.60 ± 14.58 | 1.7.1.15  | Nitrite reductase (NADH)                          |
| 1097 | 96.80 ± 17.20 | 1.15.1.1  | Superoxide dismutase                              |
| 1098 | 96.80 ± 42.16 | 1.1.5.2   | Quinoprotein glucose dehydrogenase (PQQ, quinone) |
| 1099 | 97.50 ± 15.17 | 1.17.1.8  | 4-hydroxy-tetrahydrodipicolinate reductase        |
| 1100 | 97.70 ± 39.55 | 1.2.99.5  | Formylmethanofuran dehydrogenase                  |
|      |               |           |                                                   |

| Forest s | oil (9 metagenon |           |                                                    |
|----------|------------------|-----------|----------------------------------------------------|
| row      | Avg.rank         | EC number | Oxidoreductase                                     |
| 1101     | $1.00 \pm 0.00$  | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating)     |
| 1102     | 2.67 ± 0.67      | 1.9.3.1   | Cytochrome-c oxidase                               |
| 1103     | $3.33 \pm 1.70$  | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)           |
| 1104     | 5.11 ± 1.73      | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)       |
| 1105     | $5.44 \pm 2.01$  | 1.2.1.2   | Formate dehydrogenase                              |
| 1106     | 7.56 ± 2.50      | 1.4.1.13  | Glutamate synthase (NADPH)                         |
| 1107     | 9.00 ± 4.57      | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase         |
| 1108     | 9.11 ± 3.96      | 1.17.4.1  | Ribonucleoside-diphosphate reductase               |
| 1109     | 10.00 ± 3.46     | 1.3.99.16 | Isoquinoline 1-oxidoreductase                      |
| 1110     | 11.22 ± 6.49     | 1.3.5.1   | Succinate dehydrogenase (quinone)                  |
| 1111     | 11.67 ± 2.54     | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                    |
| 1112     | 11.78 ± 4.05     | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                |
| 1113     | 12.33 ± 3.13     | 1.1.1.1   | Alcohol dehydrogenase                              |
| 1114     | 14.67 ± 4.11     | 1.2.7.3   | 2-oxoglutarate synthase                            |
| 1115     | 15.78 ± 2.20     | 1.8.1.9   | Thioredoxin-disulfide reductase                    |
| 1116     | 19.89 ± 4.79     | 1.1.5.2   | Quinoprotein glucose dehydrogenase (PQQ, quinone)  |
| 1117     | 20.00 ± 7.90     | 1.17.1.4  | Xanthine dehydrogenase                             |
| 1118     | 20.89 ± 1.97     | 1.8.1.4   | Dihydrolipoyl dehydrogenase                        |
| 1119     | 21.11 ± 8.01     | 1.1.2.8   | Alcohol dehydrogenase (cytochrome c)               |
| 1120     | 21.56 ± 6.45     | 1.1.1.49  | Glucose-6-phosphate dehydrogenase (NADP(+))        |
| 1121     | 21.67 ± 6.57     | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)   |
| 1122     | 22.78 ± 4.57     | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring) |
| 1123     | 23.00 ± 9.76     | 1.6.5.5   | NADPH:quinone reductase                            |
| 1124     | 25.11 ± 3.87     | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                    |
| 1125     | 25.67 ± 5.54     | 1.1.1.95  | Phosphoglycerate dehydrogenase                     |
|          |                  |           | 3-methyl-2-oxobutanoate dehydrogenase (2-          |
| 1126     | 28.44 ± 5.40     | 1.2.4.4   | methylpropanoyl-transferring)                      |
| 1127     | 29.11 ± 5.74     | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
| 1128     | 30.22 ± 9.69     | 1.1.99.1  | Choline dehydrogenase                              |
|          |                  |           |                                                    |

| 1129 | 34.00 ± 5.54     | 1.2.1.88   | L-glutamate gamma-semialdehyde dehydrogenase        |
|------|------------------|------------|-----------------------------------------------------|
| 1130 | $34.33 \pm 9.29$ | 1.1.1.205  | IMP dehydrogenase                                   |
| 1131 | 34.44 ± 9.08     | 1.6.1.2    | NAD(P)(+) transhydrogenase (Re/Si-specific)         |
| 1132 | 36.89 ± 11.86    | 1.1.1.42   | Isocitrate dehydrogenase (NADP(+))                  |
| 1133 | 38.00 ± 18.20    | 1.11.1.21  | Catalase peroxidase                                 |
| 1134 | 38.78 ± 5.43     | 1.11.1.15  | Peroxiredoxin                                       |
| 1135 | 38.89 ± 19.33    | 1.6.99.3   | NADH dehydrogenase                                  |
|      |                  |            | Phosphogluconate dehydrogenase (NAD(+)-             |
| 1136 | 40.22 ± 14.31    | 1.1.1.343  | dependent, decarboxylating)                         |
| 1137 | 40.89 ± 2.88     | 1.1.1.22   | UDP-glucose 6-dehydrogenase                         |
| 1138 | 41.67 ± 5.72     | 1.1.3.15   | (S)-2-hydroxy-acid oxidase                          |
|      |                  |            | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 1139 | 44.78 ± 13.10    | 1.1.1.40   | (NADP(+))                                           |
| 1140 | 46.00 ± 12.41    | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase            |
|      |                  |            | Glyceraldehyde-3-phosphate dehydrogenase            |
| 1141 | 46.89 ± 20.15    | 1.2.1.12   | (phosphorylating)                                   |
| 1142 | 49.00 ± 20.40    | 1.5.3.1    | Sarcosine oxidase                                   |
| 1143 | 52.89 ± 31.54    | 1.7.99.4   | Nitrate reductase                                   |
| 1144 | 54.56 ± 9.31     | 1.1.1.157  | 3-hydroxybutyryl-CoA dehydrogenase                  |
| 1145 | 55.44 ± 16.26    | 1.8.4.11   | Peptide-methionine (S)-S-oxide reductase            |
| 1146 | 55.56 ± 8.80     | 1.1.1.85   | 3-isopropylmalate dehydrogenase                     |
| 1147 | 56.78 ± 22.58    | 1.3.8.6    | Glutaryl-CoA dehydrogenase (ETF)                    |
| 1148 | 57.89 ± 35.69    | 1.2.7.1    | Pyruvate synthase                                   |
| 1149 | 57.89 ± 19.13    | 1.2.1.18   | Malonate-semialdehyde dehydrogenase (acetylating)   |
| 1150 | 58.44 ± 16.96    | 1.15.1.1   | Superoxide dismutase                                |
| 1151 | 58.56 ± 10.40    | 1.4.1.2    | Glutamate dehydrogenase                             |
|      |                  |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate        |
| 1152 | 58.89 ± 20.78    | 1.17.7.1   | synthase (ferredoxin)                               |
| 1153 | 60.78 ± 12.80    | 1.12.99.6  | Hydrogenase (acceptor)                              |
| 1154 | 60.89 ± 25.09    | 1.11.1.10  | Chloride peroxidase                                 |
| 1155 | 61.22 ± 12.84    | 1.2.1.11   | Aspartate-semialdehyde dehydrogenase                |
| 1156 | 62.44 ± 14.89    | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase  |
| 1157 | 62.67 ± 6.18     | 1.8.1.2    | Assimilatory sulfite reductase (NADPH)              |
| 1158 | 63.11 ± 18.07    | 1.14.13.22 | Cyclohexanone monooxygenase                         |
| 1159 | 65.44 ± 12.44    | 1.1.5.3    | Glycerol-3-phosphate dehydrogenase                  |
| 1160 | 66.44 ± 28.93    | 1.14.14.5  | Alkanesulfonate monooxygenase                       |
| 1161 | 67.67 ± 7.57     | 1.3.8.1    | Short-chain acyl-CoA dehydrogenase                  |
| 1162 | 68.00 ± 29.28    | 1.1.1.37   | Malate dehydrogenase                                |
| 1163 | 70.44 ± 23.01    | 1.3.99.22  | Coproporphyrinogen dehydrogenase                    |
| 1164 | 72.00 ± 4.88     | 1.1.1.3    | Homoserine dehydrogenase                            |
| 1165 | 72.11 ± 20.12    | 1.4.1.3    | Glutamate dehydrogenase (NAD(P)(+))                 |
| 1166 | 73.44 ± 22.89    | 1.1.1.91   | Aryl-alcohol dehydrogenase (NADP(+))                |
| 1167 | 73.44 ± 23.04    | 1.3.1.10   | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si-  |
|      |                  |            |                                                     |

|        |                    |            | specific)                                         |
|--------|--------------------|------------|---------------------------------------------------|
| 1168   | 74.22 ± 24.26      | 1.1.1.31   | 3-hydroxyisobutyrate dehydrogenase                |
| 1169   | 74.67 ± 12.97      | 1.5.5.1    | Electron-transferring-flavoprotein dehydrogenase  |
| 1170   | 74.89 ± 24.78      | 1.1.1.86   | Ketol-acid reductoisomerase (NADP(+))             |
| 1171   | 74.89 ± 18.24      | 1.13.12.16 | Nitronate monooxygenase                           |
| 1172   | 75.89 ± 26.48      | 1.2.1.8    | Betaine-aldehyde dehydrogenase                    |
| 1173   | 77.22 ± 29.32      | 1.14.19.1  | Stearoyl-CoA 9-desaturase                         |
| 1174   | 79.00 ± 22.53      | 1.4.7.1    | Glutamate synthase (ferredoxin)                   |
| 1175   | 80.44 ± 46.98      | 1.11.1.6   | Catalase                                          |
| 1176   | 80.67 ± 16.27      | 1.11.1.5   | Cytochrome-c peroxidase                           |
| 1177   | 81.78 ± 36.61      | 1.1.99.3   | Gluconate 2-dehydrogenase (acceptor)              |
| 1178   | 82.89 ± 30.64      | 1.13.11.27 | 4-hydroxyphenylpyruvate dioxygenase               |
| 1179   | 83.56 ± 13.90      | 1.1.1.136  | UDP-N-acetylglucosamine 6-dehydrogenase           |
| 1180   | 84.78 ± 15.08      | 1.5.1.5    | Methylenetetrahydrofolate dehydrogenase (NADP(+)) |
| 1181   | 88.33 ± 25.76      | 1.14.11.17 | Taurine dioxygenase                               |
| 1182   | 89.11 ± 24.55      | 1.14.14.9  | 4-hydroxyphenylacetate 3-monooxygenase            |
| 1183   | 89.78 ± 32.24      | 1.17.2.1   | Nicotinate dehydrogenase (cytochrome)             |
| 1184   | 89.89 ± 31.51      | 1.1.1.14   | L-iditol 2-dehydrogenase                          |
| 1185   | 90.44 ± 60.40      | 1.2.5.1    | Pyruvate dehydrogenase (quinone)                  |
| 1186   | 91.67 ± 23.82      | 1.1.1.267  | 1-deoxy-D-xylulose-5-phosphate reductoisomerase   |
| 1187   | 95.11 ± 23.80      | 1.4.1.1    | Alanine dehydrogenase                             |
| 1188   | 95.22 ± 47.41      | 1.97.1.4   | [Formate-C-acetyltransferase]-activating enzyme   |
| 1189   | 96.00 ± 21.18      | 1.1.1.23   | Histidinol dehydrogenase                          |
| 1190   | 96.33 ± 27.62      | 1.8.4.12   | Peptide-methionine (R)-S-oxide reductase          |
| 1191   | 96.67 ± 30.86      | 1.14.13.40 | Anthraniloyl-CoA monooxygenase                    |
| 1192   | 97.00 ± 31.92      | 1.4.3.16   | L-aspartate oxidase                               |
| 1193   | 97.89 ± 32.83      | 1.7.1.15   | Nitrite reductase (NADH)                          |
| 1194   | 98.22 ± 29.36      | 1.13.11.5  | Homogentisate 1,2-dioxygenase                     |
| 1195   | 98.78 ± 15.19      | 1.1.2.4    | D-lactate dehydrogenase (cytochrome)              |
| 1196   | 99.56 ± 28.06      | 1.1.1.169  | 2-dehydropantoate 2-reductase                     |
| 1197   | 101.00 ± 17.35     | 1.5.1.20   | Methylenetetrahydrofolate reductase (NAD(P)H)     |
| 1198   | 104.00 ± 21.87     | 1.14.12.21 | Benzoyl-CoA 2,3-dioxygenase                       |
| 1199   | 104.22 ± 35.25     | 1.1.1.271  | GDP-L-fucose synthase                             |
| 1200   | 104.56 ± 18.39     | 1.1.2.3    | L-lactate dehydrogenase (cytochrome)              |
|        |                    |            |                                                   |
| Grassl | and soil (18 metag | •          |                                                   |
| row    | Avg.rank           | EC number  | Oxidoreductase                                    |
| 1201   | $1.00 \pm 0.00$    | 1.6.5.3    | NADH:ubiquinone reductase (H(+)-translocating)    |
| 1202   | 2.28 ± 0.45        | 1.1.1.100  | 3-oxoacyl-[acyl-carrier-protein] reductase        |
| 1203   | 3.17 ± 1.01        | 1.2.99.2   | Carbon-monoxide dehydrogenase (acceptor)          |
| 1204   | 4.00 ± 1.00        | 1.9.3.1    | Cytochrome-c oxidase                              |
| 1205   | 5.22 ± 1.03        | 1.1.1.1    | Alcohol dehydrogenase                             |

1.6.5.5 NADPH:quinone reductase

1206

 $7.11 \pm 1.20$ 

| 1207 | 7.33 ± 2.83   | 1.2.1.2   | Formate dehydrogenase                              |
|------|---------------|-----------|----------------------------------------------------|
| 1208 | 10.11 ± 3.03  | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)       |
| 1209 | 10.17 ± 2.59  | 1.8.1.9   | Thioredoxin-disulfide reductase                    |
| 1210 | 12.67 ± 4.01  | 1.3.99.16 | Isoquinoline 1-oxidoreductase                      |
| 1211 | 13.06 ± 4.10  | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                    |
| 1212 | 13.22 ± 3.94  | 1.17.1.4  | Xanthine dehydrogenase                             |
| 1213 | 13.50 ± 4.57  | 1.4.1.13  | Glutamate synthase (NADPH)                         |
| 1214 | 13.72 ± 4.43  | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                |
| 1215 | 14.39 ± 4.98  | 1.6.99.3  | NADH dehydrogenase                                 |
| 1216 | 17.06 ± 4.54  | 1.17.4.1  | Ribonucleoside-diphosphate reductase               |
| 1217 | 17.83 ± 4.00  | 1.1.2.8   | Alcohol dehydrogenase (cytochrome c)               |
| 1218 | 17.89 ± 5.28  | 1.1.5.2   | Quinoprotein glucose dehydrogenase (PQQ, quinone)  |
| 1219 | 18.00 ± 5.11  | 1.8.1.4   | Dihydrolipoyl dehydrogenase                        |
| 1220 | 18.22 ± 3.71  | 1.3.5.1   | Succinate dehydrogenase (quinone)                  |
| 1221 | 21.00 ± 4.77  | 1.2.7.3   | 2-oxoglutarate synthase                            |
| 1222 | 21.44 ± 3.39  | 1.1.1.95  | Phosphoglycerate dehydrogenase                     |
| 1223 | 23.06 ± 4.22  | 1.1.1.49  | Glucose-6-phosphate dehydrogenase (NADP(+))        |
| 1224 | 26.00 ± 7.59  | 1.2.7.1   | Pyruvate synthase                                  |
| 1225 | 26.11 ± 5.29  | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                    |
| 1226 | 30.56 ± 7.91  | 1.5.3.1   | Sarcosine oxidase                                  |
| 1227 | 31.33 ± 8.50  | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)   |
| 1228 | 33.22 ± 17.25 | 1.1.99.1  | Choline dehydrogenase                              |
| 1229 | 34.17 ± 10.69 | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
| 1230 | 34.33 ± 10.11 | 1.1.1.205 | IMP dehydrogenase                                  |
| 1231 | 34.83 ± 12.51 | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring) |
|      |               |           | 3-methyl-2-oxobutanoate dehydrogenase (2-          |
| 1232 | 35.50 ± 12.76 | 1.2.4.4   | methylpropanoyl-transferring)                      |
| 1233 | 37.50 ± 9.42  | 1.11.1.15 | Peroxiredoxin                                      |
| 1234 | 39.72 ± 13.96 | 1.1.1.31  | 3-hydroxyisobutyrate dehydrogenase                 |
| 1235 | 42.67 ± 15.91 | 1.2.1.88  | L-glutamate gamma-semialdehyde dehydrogenase       |
| 1236 | 44.78 ± 23.41 | 1.14.14.5 | Alkanesulfonate monooxygenase                      |
| 1237 | 44.83 ± 16.14 | 1.1.1.22  | UDP-glucose 6-dehydrogenase                        |
| 1238 | 46.00 ± 16.50 | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)        |
| 1239 | 47.72 ± 18.03 | 1.11.1.10 | Chloride peroxidase                                |
| 1240 | 47.78 ± 12.43 | 1.17.2.1  | Nicotinate dehydrogenase (cytochrome)              |
| 1241 | 48.11 ± 17.98 | 1.1.99.3  | Gluconate 2-dehydrogenase (acceptor)               |
| 1242 | 49.39 ± 13.54 | 1.1.1.91  | Aryl-alcohol dehydrogenase (NADP(+))               |
| 1243 | 51.06 ± 15.15 | 1.7.99.4  | Nitrate reductase                                  |
| 1244 | 51.39 ± 17.79 | 1.3.99.22 | Coproporphyrinogen dehydrogenase                   |
|      |               |           | Phosphogluconate dehydrogenase (NAD(+)-            |
| 1245 | 51.89 ± 16.30 | 1.1.1.343 | dependent, decarboxylating)                        |
| 1246 | 53.00 ± 25.62 | 1.1.3.15  | (S)-2-hydroxy-acid oxidase                         |
| 1247 | 53.06 ± 13.20 | 1.1.1.18  | Inositol 2-dehydrogenase                           |

| 1248 | 54.78 ± 26.43 | 1.18.1.3   | FerredoxinNAD(+) reductase                          |
|------|---------------|------------|-----------------------------------------------------|
| 1249 | 58.06 ± 14.49 | 1.1.1.42   | Isocitrate dehydrogenase (NADP(+))                  |
| 1250 | 58.11 ± 28.74 | 1.11.1.5   | Cytochrome-c peroxidase                             |
| 1251 | 61.06 ± 12.09 | 1.1.1.14   | L-iditol 2-dehydrogenase                            |
| 1252 | 61.28 ± 25.75 | 1.1.5.3    | Glycerol-3-phosphate dehydrogenase                  |
| 1253 | 62.28 ± 15.23 | 1.1.1.157  | 3-hydroxybutyryl-CoA dehydrogenase                  |
| 1254 | 62.94 ± 18.56 | 1.13.12.16 | Nitronate monooxygenase                             |
|      |               |            | Glyceraldehyde-3-phosphate dehydrogenase            |
| 1255 | 65.33 ± 21.66 | 1.2.1.12   | (phosphorylating)                                   |
| 1256 | 66.89 ± 32.51 | 1.4.1.2    | Glutamate dehydrogenase                             |
| 1257 | 67.61 ± 23.94 | 1.1.1.3    | Homoserine dehydrogenase                            |
| 1258 | 67.89 ± 19.61 | 1.1.1.169  | 2-dehydropantoate 2-reductase                       |
| 1259 | 67.94 ± 22.91 | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase            |
| 1260 | 68.28 ± 27.74 | 1.3.8.1    | Short-chain acyl-CoA dehydrogenase                  |
| 1261 | 68.44 ± 28.95 | 1.14.13.22 | Cyclohexanone monooxygenase                         |
|      |               |            | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 1262 | 69.61 ± 25.36 | 1.1.1.40   | (NADP(+))                                           |
| 1263 | 72.06 ± 21.40 | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase  |
| 1264 | 72.78 ± 19.68 | 1.1.1.65   | Pyridoxine 4-dehydrogenase                          |
| 1265 | 75.00 ± 23.25 | 1.14.19.1  | Stearoyl-CoA 9-desaturase                           |
| 1266 | 76.17 ± 23.95 | 1.15.1.1   | Superoxide dismutase                                |
| 1267 | 76.17 ± 25.08 | 1.3.8.6    | Glutaryl-CoA dehydrogenase (ETF)                    |
| 1268 | 77.00 ± 21.77 | 1.8.4.11   | Peptide-methionine (S)-S-oxide reductase            |
| 1269 | 77.06 ± 24.52 | 1.8.1.2    | Assimilatory sulfite reductase (NADPH)              |
| 1270 | 79.17 ± 25.08 | 1.2.1.18   | Malonate-semialdehyde dehydrogenase (acetylating)   |
| 1271 | 80.33 ± 31.87 | 1.12.99.6  | Hydrogenase (acceptor)                              |
| 1272 | 81.17 ± 36.73 | 1.1.1.85   | 3-isopropylmalate dehydrogenase                     |
| 1273 | 83.44 ± 34.48 | 1.11.1.21  | Catalase peroxidase                                 |
| 1274 | 84.72 ± 28.35 | 1.13.12.3  | Tryptophan 2-monooxygenase                          |
| 1275 | 84.72 ± 21.36 | 1.1.1.25   | Shikimate dehydrogenase                             |
| 1276 | 85.89 ± 25.54 | 1.20.4.1   | Arsenate reductase (glutaredoxin)                   |
| 1277 | 88.00 ± 23.48 | 1.8.1.8    | Protein-disulfide reductase                         |
| 1278 | 88.06 ± 30.45 | 1.2.1.11   | Aspartate-semialdehyde dehydrogenase                |
| 1279 | 88.22 ± 22.55 | 1.6.5.2    | NAD(P)H dehydrogenase (quinone)                     |
| 1280 | 88.50 ± 30.67 | 1.14.11.17 | Taurine dioxygenase                                 |
| 1281 | 88.67 ± 32.77 | 1.4.3.4    | Monoamine oxidase                                   |
|      |               |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate        |
| 1282 | 89.83 ± 24.95 | 1.17.7.1   | synthase (ferredoxin)                               |
| 1283 | 93.44 ± 31.31 | 1.4.1.3    | Glutamate dehydrogenase (NAD(P)(+))                 |
| 1284 | 93.44 ± 35.28 | 1.11.1.6   | Catalase                                            |
| 1285 | 95.28 ± 47.04 | 1.2.1.8    | Betaine-aldehyde dehydrogenase                      |
| 1286 | 96.11 ± 21.37 | 1.1.2.6    | Polyvinyl alcohol dehydrogenase (cytochrome)        |
| 1287 | 96.28 ± 23.79 | 1.1.1.267  | 1-deoxy-D-xylulose-5-phosphate reductoisomerase     |

|      |                |            | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si- |
|------|----------------|------------|----------------------------------------------------|
| 1288 | 96.72 ± 35.13  | 1.3.1.10   | specific)                                          |
| 1289 | 96.83 ± 27.55  | 1.1.1.219  | Dihydrokaempferol 4-reductase                      |
| 1290 | 97.72 ± 31.43  | 1.3.1.34   | 2,4-dienoyl-CoA reductase (NADPH)                  |
| 1291 | 97.78 ± 30.67  | 1.1.1.133  | dTDP-4-dehydrorhamnose reductase                   |
| 1292 | 97.89 ± 27.21  | 1.1.1.69   | Gluconate 5-dehydrogenase                          |
| 1293 | 98.61 ± 34.85  | 1.5.1.3    | Dihydrofolate reductase                            |
| 1294 | 99.72 ± 40.43  | 1.1.1.136  | UDP-N-acetylglucosamine 6-dehydrogenase            |
| 1295 | 101.22 ± 26.69 | 1.1.1.37   | Malate dehydrogenase                               |
| 1296 | 101.94 ± 43.91 | 1.13.11.27 | 4-hydroxyphenylpyruvate dioxygenase                |
| 1297 | 102.06 ± 28.18 | 1.17.1.8   | 4-hydroxy-tetrahydrodipicolinate reductase         |
| 1298 | 103.00 ± 23.82 | 1.1.1.193  | 5-amino-6-(5-phosphoribosylamino)uracil reductase  |
| 1299 | 104.78 ± 45.47 | 1.14.13.1  | Salicylate 1-monooxygenase                         |
| 1300 | 105.83 ± 39.99 | 1.1.2.3    | L-lactate dehydrogenase (cytochrome)               |
|      |                |            |                                                    |

| Hot dese | ert (3 metagenor | mes)             |                                                    |
|----------|------------------|------------------|----------------------------------------------------|
| row      | Avg.rank         | <b>EC</b> number | Oxidoreductase                                     |
| 1301     | $1.00 \pm 0.00$  | 1.6.5.3          | NADH:ubiquinone reductase (H(+)-translocating)     |
| 1302     | $2.00 \pm 0.00$  | 1.9.3.1          | Cytochrome-c oxidase                               |
| 1303     | $3.00 \pm 0.00$  | 1.2.4.1          | Pyruvate dehydrogenase (acetyl-transferring)       |
| 1304     | $4.33 \pm 0.47$  | 1.17.4.1         | Ribonucleoside-diphosphate reductase               |
| 1305     | $5.00 \pm 0.82$  | 1.3.5.1          | Succinate dehydrogenase (quinone)                  |
| 1306     | 5.67 ± 0.47      | 1.4.1.13         | Glutamate synthase (NADPH)                         |
| 1307     | $7.33 \pm 0.47$  | 1.2.99.2         | Carbon-monoxide dehydrogenase (acceptor)           |
| 1308     | $7.67 \pm 0.47$  | 1.2.1.2          | Formate dehydrogenase                              |
| 1309     | $10.00 \pm 1.41$ | 1.2.1.3          | Aldehyde dehydrogenase (NAD(+))                    |
| 1310     | 10.33 ± 0.47     | 1.2.4.2          | Oxoglutarate dehydrogenase (succinyl-transferring) |
| 1311     | 11.00 ± 1.41     | 1.3.8.7          | Medium-chain acyl-CoA dehydrogenase                |
| 1312     | 11.33 ± 1.25     | 1.1.1.1          | Alcohol dehydrogenase                              |
| 1313     | $12.33 \pm 0.94$ | 1.4.4.2          | Glycine dehydrogenase (aminomethyl-transferring)   |
| 1314     | 14.67 ± 0.94     | 1.8.1.9          | Thioredoxin-disulfide reductase                    |
| 1315     | 15.33 ± 0.47     | 1.1.1.100        | 3-oxoacyl-[acyl-carrier-protein] reductase         |
| 1316     | 15.67 ± 1.25     | 1.8.1.4          | Dihydrolipoyl dehydrogenase                        |
| 1317     | 16.33 ± 0.94     | 1.2.7.3          | 2-oxoglutarate synthase                            |
| 1318     | 18.33 ± 0.47     | 1.1.1.205        | IMP dehydrogenase                                  |
|          |                  |                  | 3-methyl-2-oxobutanoate dehydrogenase (2-          |
| 1319     | 19.00 ± 0.82     | 1.2.4.4          | methylpropanoyl-transferring)                      |
| 1320     | 20.00 ± 0.82     | 1.6.1.2          | NAD(P)(+) transhydrogenase (Re/Si-specific)        |
| 1321     | 22.33 ± 2.62     | 1.1.1.42         | Isocitrate dehydrogenase (NADP(+))                 |
| 1322     | 23.00 ± 1.41     | 1.2.1.16         | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
| 1323     | 23.33 ± 0.47     | 1.1.1.95         | Phosphoglycerate dehydrogenase                     |
| 1324     | 24.00 ± 1.41     | 1.2.1.88         | L-glutamate gamma-semialdehyde dehydrogenase       |
| 1325     | 24.33 ± 3.30     | 1.17.1.4         | Xanthine dehydrogenase                             |
|          |                  |                  |                                                    |

| 1326 | 26.00 ± 2.16  | 1.1.1.49   | Glucose-6-phosphate dehydrogenase (NADP(+)) Glyceraldehyde-3-phosphate dehydrogenase |
|------|---------------|------------|--------------------------------------------------------------------------------------|
| 1327 | 26.67 ± 0.94  | 1.2.1.12   | (phosphorylating)                                                                    |
| 1328 | 28.33 ± 2.36  | 1.1.1.22   | UDP-glucose 6-dehydrogenase                                                          |
| 1329 | 29.33 ± 2.62  | 1.1.1.35   | 3-hydroxyacyl-CoA dehydrogenase                                                      |
| 1330 | 30.33 ± 3.40  | 1.4.1.2    | Glutamate dehydrogenase                                                              |
| 1331 | 32.33 ± 0.47  | 1.5.3.1    | Sarcosine oxidase                                                                    |
|      |               |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate                                         |
| 1332 | 33.00 ± 2.83  | 1.17.7.1   | synthase (ferredoxin)                                                                |
| 1333 | 35.00 ± 0.82  | 1.1.1.37   | Malate dehydrogenase                                                                 |
| 1334 | 36.00 ± 7.12  | 1.3.8.6    | Glutaryl-CoA dehydrogenase (ETF)                                                     |
| 1335 | 36.67 ± 4.92  | 1.6.99.3   | NADH dehydrogenase                                                                   |
| 1336 | 38.00 ± 4.97  | 1.2.1.18   | Malonate-semialdehyde dehydrogenase (acetylating)                                    |
| 1337 | 38.33 ± 0.47  | 1.1.3.15   | (S)-2-hydroxy-acid oxidase                                                           |
| 1338 | 40.33 ± 2.87  | 1.1.1.157  | 3-hydroxybutyryl-CoA dehydrogenase                                                   |
|      |               |            | Phosphogluconate dehydrogenase (NAD(+)-                                              |
| 1339 | 40.33 ± 1.25  | 1.1.1.343  | dependent, decarboxylating)                                                          |
| 1340 | 41.33 ± 4.50  | 1.11.1.21  | Catalase peroxidase                                                                  |
| 1341 | 41.67 ± 1.25  | 1.8.4.11   | Peptide-methionine (S)-S-oxide reductase                                             |
| 1342 | 43.00 ± 7.48  | 1.4.1.3    | Glutamate dehydrogenase (NAD(P)(+))                                                  |
| 1343 | 45.33 ± 7.59  | 1.11.1.15  | Peroxiredoxin                                                                        |
| 1344 | 45.33 ± 2.87  | 1.1.1.86   | Ketol-acid reductoisomerase (NADP(+))                                                |
| 1345 | 45.33 ± 13.96 | 1.12.99.6  | Hydrogenase (acceptor)                                                               |
| 1346 | 47.67 ± 1.70  | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase                                   |
| 1347 | 47.67 ± 5.31  | 1.2.1.11   | Aspartate-semialdehyde dehydrogenase                                                 |
| 1348 | 49.67 ± 1.25  | 1.1.1.85   | 3-isopropylmalate dehydrogenase                                                      |
| 1349 | 50.67 ± 2.62  | 1.4.1.1    | Alanine dehydrogenase                                                                |
| 1350 | 51.00 ± 2.16  | 1.6.5.5    | NADPH:quinone reductase                                                              |
| 1351 | 51.33 ± 8.99  | 1.1.1.133  | dTDP-4-dehydrorhamnose reductase                                                     |
| 1352 | 53.00 ± 1.63  | 1.15.1.1   | Superoxide dismutase                                                                 |
| 1353 | 53.00 ± 14.17 | 1.3.99.16  | Isoquinoline 1-oxidoreductase                                                        |
| 1354 | 53.67 ± 7.41  | 1.13.11.27 | , ,, ,, ,,                                                                           |
|      |               |            | Malate dehydrogenase (oxaloacetate-decarboxylating)                                  |
| 1355 | 54.67 ± 9.03  | 1.1.1.40   | (NADP(+))                                                                            |
| 1356 | 55.33 ± 21.23 | 1.1.5.2    | Quinoprotein glucose dehydrogenase (PQQ, quinone)                                    |
| 1357 | 56.67 ± 4.50  | 1.2.1.8    | Betaine-aldehyde dehydrogenase                                                       |
| 1358 | 57.67 ± 0.47  | 1.7.1.15   | Nitrite reductase (NADH)                                                             |
| 1359 | 57.67 ± 4.03  | 1.3.8.1    | Short-chain acyl-CoA dehydrogenase                                                   |
| 1360 | 58.00 ± 7.48  | 1.1.1.38   | Malate dehydrogenase (oxaloacetate-decarboxylating)                                  |
| 1361 | 60.33 ± 1.70  | 1.11.1.6   | Catalase                                                                             |
| 1362 | 61.33 ± 3.30  | 1.7.99.4   | Nitrate reductase                                                                    |
| 1363 | 61.33 ± 4.78  | 1.14.19.1  | Stearoyl-CoA 9-desaturase                                                            |
| 1364 | 62.33 ± 6.13  | 1.1.1.3    | Homoserine dehydrogenase                                                             |

| 1365 | 64.33 ± 10.66 | 1.4.7.1     | Glutamate synthase (ferredoxin)                    |
|------|---------------|-------------|----------------------------------------------------|
| 1366 | 65.00 ± 6.53  | 1.1.2.8     | Alcohol dehydrogenase (cytochrome c)               |
| 1367 | 66.33 ± 3.30  | 1.5.1.5     | Methylenetetrahydrofolate dehydrogenase (NADP(+))  |
| 1368 | 66.33 ± 2.49  | 1.1.1.267   | 1-deoxy-D-xylulose-5-phosphate reductoisomerase    |
| 1369 | 68.00 ± 1.41  | 1.1.99.1    | Choline dehydrogenase                              |
| 1370 | 68.33 ± 6.60  | 1.1.5.3     | Glycerol-3-phosphate dehydrogenase                 |
| 1371 | 68.67 ± 6.34  | 1.13.11.5   | Homogentisate 1,2-dioxygenase                      |
|      | 00.07 = 0.0 . |             | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si- |
| 1372 | 70.33 ± 2.05  | 1.3.1.10    | specific)                                          |
| 1373 | 71.67 ± 0.47  | 1.8.4.12    | Peptide-methionine (R)-S-oxide reductase           |
| 1374 | 74.00 ± 6.16  | 1.1.1.41    | Isocitrate dehydrogenase (NAD(+))                  |
| 1375 | 74.67 ± 4.78  | 1.1.1.136   | UDP-N-acetylglucosamine 6-dehydrogenase            |
| 1376 | 76.00 ± 4.90  | 1.2.7.8     | Indolepyruvate ferredoxin oxidoreductase           |
| 1377 | 76.33 ± 1.70  | 1.4.3.16    | L-aspartate oxidase                                |
| 1378 | 78.67 ± 3.68  | 1.8.1.2     | Assimilatory sulfite reductase (NADPH)             |
| 1379 | 79.00 ± 4.97  | 1.2.5.1     | Pyruvate dehydrogenase (quinone)                   |
| 1380 | 79.33 ± 2.49  | 1.1.1.23    | Histidinol dehydrogenase                           |
| 1381 | 80.67 ± 4.50  | 1.5.5.1     | Electron-transferring-flavoprotein dehydrogenase   |
| 1382 | 81.33 ± 5.25  | 1.14.13.149 | Phenylacetyl-CoA 1,2-epoxidase                     |
| 1383 | 82.33 ± 4.78  | 1.97.1.4    | [Formate-C-acetyltransferase]-activating enzyme    |
| 1384 | 84.33 ± 3.30  | 1.1.1.91    | Aryl-alcohol dehydrogenase (NADP(+))               |
| 1385 | 85.00 ± 4.90  | 1.2.1.41    | Glutamate-5-semialdehyde dehydrogenase             |
| 1386 | 85.67 ± 3.40  | 1.3.99.26   | All-trans-zeta-carotene desaturase                 |
| 1387 | 88.00 ± 5.72  | 1.14.13.40  | Anthraniloyl-CoA monooxygenase                     |
| 1388 | 89.33 ± 1.70  | 1.5.1.20    | Methylenetetrahydrofolate reductase (NAD(P)H)      |
| 1389 | 89.67 ± 6.24  | 1.14.13.22  | Cyclohexanone monooxygenase                        |
| 1390 | 91.00 ± 1.41  | 1.8.7.1     | Assimilatory sulfite reductase (ferredoxin)        |
| 1391 | 91.33 ± 4.03  | 1.3.99.22   | Coproporphyrinogen dehydrogenase                   |
| 1392 | 93.00 ± 1.63  | 1.1.1.262   | 4-hydroxythreonine-4-phosphate dehydrogenase       |
| 1393 | 93.67 ± 6.94  | 1.13.11.2   | Catechol 2,3-dioxygenase                           |
| 1394 | 94.00 ± 7.26  | 1.1.1.271   | GDP-L-fucose synthase                              |
| 1395 | 95.00 ± 8.04  | 1.14.13.127 | 3-(3-hydroxy-phenyl)propanoic acid hydroxylase     |
| 1396 | 96.00 ± 1.63  | 1.1.1.83    | D-malate dehydrogenase (decarboxylating)           |
| 1397 | 96.00 ± 1.63  | 1.2.1.38    | N-acetyl-gamma-glutamyl-phosphate reductase        |
| 1398 | 96.67 ± 3.30  | 1.21.98.1   | Cyclic dehypoxanthinyl futalosine synthase         |
| 1399 | 99.33 ± 3.30  | 1.18.1.2    | FerredoxinNADP(+) reductase                        |
| 1400 | 101.33 ± 7.41 | 1.8.4.8     | Phosphoadenylyl-sulfate reductase (thioredoxin)    |
|      |               |             |                                                    |

#### Polar desert (8 metagenomes)

| row  | Avg.rank        | EC number | Oxidoreductase                                 |
|------|-----------------|-----------|------------------------------------------------|
| 1401 | $1.00 \pm 0.00$ | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating) |
| 1402 | 2.12 ± 0.33     | 1.9.3.1   | Cytochrome-c oxidase                           |
| 1403 | 3.75 ± 0.83     | 1.17.4.1  | Ribonucleoside-diphosphate reductase           |

| 1404 | 4.88 ± 1.45   | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)       |
|------|---------------|-----------|----------------------------------------------------|
| 1405 | 5.12 ± 1.96   | 1.3.5.1   | Succinate dehydrogenase (quinone)                  |
| 1406 | 6.25 ± 2.63   | 1.4.1.13  | Glutamate synthase (NADPH)                         |
| 1407 | 9.00 ± 2.40   | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring) |
| 1408 | 9.88 ± 2.85   | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)   |
| 1409 | 11.50 ± 3.54  | 1.8.1.4   | Dihydrolipoyl dehydrogenase                        |
| 1410 | 12.38 ± 5.27  | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                    |
| 1411 | 14.12 ± 5.16  | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                |
| 1412 | 14.50 ± 5.94  | 1.2.1.2   | Formate dehydrogenase                              |
| 1413 | 17.75 ± 11.89 | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)           |
| 1414 | 17.75 ± 5.87  | 1.8.1.9   | Thioredoxin-disulfide reductase                    |
| 1415 | 17.88 ± 1.83  | 1.1.1.205 | IMP dehydrogenase                                  |
| 1416 | 19.88 ± 4.99  | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase         |
| 1417 | 20.12 ± 5.90  | 1.1.1.42  | Isocitrate dehydrogenase (NADP(+))                 |
| 1418 | 22.25 ± 3.27  | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)        |
|      |               |           | Glyceraldehyde-3-phosphate dehydrogenase           |
| 1419 | 23.38 ± 5.83  | 1.2.1.12  | (phosphorylating)                                  |
| 1420 | 23.62 ± 23.23 | 1.11.1.6  | Catalase                                           |
| 1421 | 23.75 ± 4.68  | 1.1.1.95  | Phosphoglycerate dehydrogenase                     |
|      |               |           | 3-methyl-2-oxobutanoate dehydrogenase (2-          |
| 1422 | 24.38 ± 19.15 | 1.2.4.4   | methylpropanoyl-transferring)                      |
| 1423 | 24.50 ± 6.80  | 1.2.1.88  | L-glutamate gamma-semialdehyde dehydrogenase       |
| 1424 | 26.00 ± 6.89  | 1.1.1.1   | Alcohol dehydrogenase                              |
| 1425 | 26.25 ± 5.54  | 1.1.1.49  | Glucose-6-phosphate dehydrogenase (NADP(+))        |
| 1426 | 27.38 ± 10.50 | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
|      |               |           | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate       |
| 1427 | 29.38 ± 4.50  | 1.17.7.1  | synthase (ferredoxin)                              |
| 1428 | 29.50 ± 2.06  | 1.1.1.22  | UDP-glucose 6-dehydrogenase                        |
| 1429 | 29.75 ± 46.78 | 1.12.99.6 | Hydrogenase (acceptor)                             |
| 1430 | 30.88 ± 11.07 | 1.17.1.4  | Xanthine dehydrogenase                             |
| 1431 | 31.75 ± 11.46 | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                    |
| 1432 | 35.50 ± 29.26 | 1.2.7.3   | 2-oxoglutarate synthase                            |
| 1433 | 36.12 ± 5.64  | 1.1.1.37  | Malate dehydrogenase                               |
| 1434 | 37.50 ± 7.47  | 1.8.4.11  | Peptide-methionine (S)-S-oxide reductase           |
| 1435 | 40.12 ± 16.51 | 1.11.1.21 | Catalase peroxidase                                |
| 1436 | 40.50 ± 12.88 | 1.3.8.6   | Glutaryl-CoA dehydrogenase (ETF)                   |
|      |               |           | Phosphogluconate dehydrogenase (NAD(+)-            |
| 1437 | 42.62 ± 10.15 | 1.1.1.343 | dependent, decarboxylating)                        |
| 1438 | 43.12 ± 9.02  | 1.17.1.2  | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
| 1439 | 43.62 ± 6.96  | 1.1.1.157 | 3-hydroxybutyryl-CoA dehydrogenase                 |
| 1440 | 44.00 ± 4.72  | 1.4.1.1   | Alanine dehydrogenase                              |
| 1441 | 44.25 ± 3.80  | 1.2.1.11  | Aspartate-semialdehyde dehydrogenase               |
| 1442 | 45.50 ± 16.05 | 1.4.1.3   | Glutamate dehydrogenase (NAD(P)(+))                |

| 1443 | 46.00 ± 11.42 | 1.1.1.86    | Ketol-acid reductoisomerase (NADP(+))               |
|------|---------------|-------------|-----------------------------------------------------|
| 1444 | 48.00 ± 10.00 | 1.15.1.1    | Superoxide dismutase                                |
| 1445 | 48.50 ± 15.91 | 1.4.1.2     | Glutamate dehydrogenase                             |
| 1446 | 50.62 ± 6.82  | 1.1.1.3     | Homoserine dehydrogenase                            |
| 1447 | 52.00 ± 13.88 | 1.11.1.15   | Peroxiredoxin                                       |
| 1448 | 53.62 ± 13.55 | 1.1.3.15    | (S)-2-hydroxy-acid oxidase                          |
| 1449 | 54.00 ± 14.86 | 1.6.99.3    | NADH dehydrogenase                                  |
| 1450 | 55.25 ± 7.05  | 1.1.1.85    | 3-isopropylmalate dehydrogenase                     |
| 1451 | 55.75 ± 8.88  | 1.8.4.12    | Peptide-methionine (R)-S-oxide reductase            |
| 1452 | 56.12 ± 8.80  | 1.1.1.267   | 1-deoxy-D-xylulose-5-phosphate reductoisomerase     |
| 1453 | 56.75 ± 21.78 | 1.5.3.1     | Sarcosine oxidase                                   |
| 1454 | 56.88 ± 11.36 | 1.13.11.27  | 4-hydroxyphenylpyruvate dioxygenase                 |
| 1455 | 58.25 ± 14.69 | 1.2.1.18    | Malonate-semialdehyde dehydrogenase (acetylating)   |
|      |               |             | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si-  |
| 1456 | 58.62 ± 6.82  | 1.3.1.10    | specific)                                           |
| 1457 | 59.50 ± 13.68 | 1.3.8.1     | Short-chain acyl-CoA dehydrogenase                  |
|      |               |             | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 1458 | 60.75 ± 20.36 | 1.1.1.40    | (NADP(+))                                           |
| 1459 | 61.75 ± 14.33 | 1.14.19.1   | Stearoyl-CoA 9-desaturase                           |
| 1460 | 62.88 ± 18.61 | 1.3.99.26   | All-trans-zeta-carotene desaturase                  |
| 1461 | 63.25 ± 37.80 | 1.2.5.1     | Pyruvate dehydrogenase (quinone)                    |
| 1462 | 63.25 ± 2.95  | 1.5.1.5     | Methylenetetrahydrofolate dehydrogenase (NADP(+))   |
| 1463 | 63.50 ± 14.27 | 1.1.5.3     | Glycerol-3-phosphate dehydrogenase                  |
| 1464 | 63.62 ± 12.61 | 1.13.11.5   | Homogentisate 1,2-dioxygenase                       |
| 1465 | 63.75 ± 20.57 | 1.4.7.1     | Glutamate synthase (ferredoxin)                     |
| 1466 | 63.88 ± 21.96 | 1.4.3.16    | L-aspartate oxidase                                 |
| 1467 | 64.00 ± 28.46 | 1.7.1.15    | Nitrite reductase (NADH)                            |
| 1468 | 70.12 ± 9.75  | 1.1.1.23    | Histidinol dehydrogenase                            |
| 1469 | 71.12 ± 18.24 | 1.7.99.4    | Nitrate reductase                                   |
| 1470 | 71.25 ± 17.79 | 1.1.1.38    | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 1471 | 72.38 ± 16.48 | 1.1.1.133   | dTDP-4-dehydrorhamnose reductase                    |
| 1472 | 73.12 ± 21.69 | 1.6.5.5     | NADPH:quinone reductase                             |
| 1473 | 74.62 ± 12.55 | 1.5.1.20    | Methylenetetrahydrofolate reductase (NAD(P)H)       |
| 1474 | 75.00 ± 13.69 | 1.5.5.1     | Electron-transferring-flavoprotein dehydrogenase    |
| 1475 | 75.12 ± 30.02 | 1.2.1.8     | Betaine-aldehyde dehydrogenase                      |
| 1476 | 75.38 ± 10.25 | 1.2.1.41    | Glutamate-5-semialdehyde dehydrogenase              |
| 1477 | 76.25 ± 12.36 | 1.14.13.149 | Phenylacetyl-CoA 1,2-epoxidase                      |
| 1478 | 78.88 ± 12.62 | 1.3.99.22   | Coproporphyrinogen dehydrogenase                    |
| 1479 | 80.88 ± 23.98 | 1.1.1.136   | UDP-N-acetylglucosamine 6-dehydrogenase             |
| 1480 | 83.88 ± 7.24  | 1.1.1.94    | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))      |
| 1481 | 84.50 ± 8.49  | 1.1.5.2     | Quinoprotein glucose dehydrogenase (PQQ, quinone)   |
| 1482 | 86.00 ± 4.03  | 1.1.1.193   | 5-amino-6-(5-phosphoribosylamino)uracil reductase   |
| 1483 | 86.25 ± 25.18 | 1.8.1.7     | Glutathione-disulfide reductase                     |

| 1484 | 87.75 ± 11.87  | 1.14.13.40 | Anthraniloyl-CoA monooxygenase                  |
|------|----------------|------------|-------------------------------------------------|
| 1485 | 88.88 ± 24.19  | 1.8.1.2    | Assimilatory sulfite reductase (NADPH)          |
| 1486 | 89.88 ± 24.89  | 1.1.1.271  | GDP-L-fucose synthase                           |
| 1487 | 90.25 ± 30.66  | 1.14.19.3  | Acyl-CoA 6-desaturase                           |
| 1488 | 90.25 ± 17.41  | 1.17.99.6  | Epoxyqueuosine reductase                        |
| 1489 | 92.50 ± 7.52   | 1.3.1.98   | UDP-N-acetylmuramate dehydrogenase              |
| 1490 | 93.00 ± 22.36  | 1.1.99.1   | Choline dehydrogenase                           |
| 1491 | 93.25 ± 16.70  | 1.18.1.2   | FerredoxinNADP(+) reductase                     |
| 1492 | 93.62 ± 7.55   | 1.2.1.38   | N-acetyl-gamma-glutamyl-phosphate reductase     |
| 1493 | 97.88 ± 30.72  | 1.1.1.41   | Isocitrate dehydrogenase (NAD(+))               |
| 1494 | 98.25 ± 13.40  | 1.1.1.262  | 4-hydroxythreonine-4-phosphate dehydrogenase    |
| 1495 | 99.25 ± 19.27  | 1.8.7.1    | Assimilatory sulfite reductase (ferredoxin)     |
| 1496 | 101.00 ± 5.83  | 1.17.1.8   | 4-hydroxy-tetrahydrodipicolinate reductase      |
| 1497 | 102.75 ± 37.82 | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase        |
| 1498 | 103.88 ± 27.51 | 1.3.99.16  | Isoquinoline 1-oxidoreductase                   |
| 1499 | 105.50 ± 12.62 | 1.8.4.8    | Phosphoadenylyl-sulfate reductase (thioredoxin) |
| 1500 | 106.50 ± 21.37 | 1.16.3.1   | Ferroxidase                                     |

| row  | Avg.rank         | EC number | Oxidoreductase                                     |
|------|------------------|-----------|----------------------------------------------------|
| 1501 | $1.00 \pm 0.00$  | 1.6.5.3   | NADH:ubiquinone reductase (H(+)-translocating)     |
| 1502 | 3.69 ± 2.61      | 1.9.3.1   | Cytochrome-c oxidase                               |
| 1503 | 4.15 ± 1.41      | 1.2.4.1   | Pyruvate dehydrogenase (acetyl-transferring)       |
| 1504 | $5.38 \pm 3.10$  | 1.1.1.100 | 3-oxoacyl-[acyl-carrier-protein] reductase         |
| 1505 | 5.77 ± 1.48      | 1.4.1.13  | Glutamate synthase (NADPH)                         |
| 1506 | 5.92 ± 3.77      | 1.2.99.2  | Carbon-monoxide dehydrogenase (acceptor)           |
| 1507 | 7.85 ± 2.68      | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                |
| 1508 | 8.31 ± 1.32      | 1.1.1.1   | Alcohol dehydrogenase                              |
| 1509 | 8.31 ± 2.43      | 1.2.1.2   | Formate dehydrogenase                              |
| 1510 | 10.15 ± 4.42     | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                    |
| 1511 | 13.23 ± 13.95    | 1.17.4.1  | Ribonucleoside-diphosphate reductase               |
| 1512 | 13.31 ± 2.70     | 1.3.5.1   | Succinate dehydrogenase (quinone)                  |
| 1513 | 15.31 ± 3.20     | 1.17.1.4  | Xanthine dehydrogenase                             |
| 1514 | 15.54 ± 3.91     | 1.8.1.4   | Dihydrolipoyl dehydrogenase                        |
| 1515 | 18.69 ± 10.62    | 1.7.99.4  | Nitrate reductase                                  |
| 1516 | 18.69 ± 2.70     | 1.8.1.9   | Thioredoxin-disulfide reductase                    |
| 1517 | 19.00 ± 5.64     | 1.2.4.2   | Oxoglutarate dehydrogenase (succinyl-transferring) |
| 1518 | 20.15 ± 4.79     | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
| 1519 | 21.00 ± 4.26     | 1.4.4.2   | Glycine dehydrogenase (aminomethyl-transferring)   |
| 1520 | 21.54 ± 5.94     | 1.6.5.5   | NADPH:quinone reductase                            |
| 1521 | $23.23 \pm 9.74$ | 1.1.1.95  | Phosphoglycerate dehydrogenase                     |
| 1522 | 24.31 ± 6.72     | 1.2.7.3   | 2-oxoglutarate synthase                            |
| 1523 | 25.85 ± 8.60     | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                    |
|      |                  |           |                                                    |

| 1524 | 27.00 ± 6.95  | 1.1.1.49   | Glucose-6-phosphate dehydrogenase (NADP(+))        |
|------|---------------|------------|----------------------------------------------------|
| 1525 | 27.46 ± 13.95 | 1.3.99.16  | Isoquinoline 1-oxidoreductase                      |
| 1526 | 27.92 ± 5.85  | 1.6.1.2    | NAD(P)(+) transhydrogenase (Re/Si-specific)        |
| 1527 | 29.00 ± 5.70  | 1.1.1.205  | IMP dehydrogenase                                  |
| 1528 | 29.46 ± 3.25  | 1.2.1.88   | L-glutamate gamma-semialdehyde dehydrogenase       |
| 1529 | 32.69 ± 11.42 | 1.5.3.1    | Sarcosine oxidase                                  |
| 1530 | 33.31 ± 19.08 | 1.1.99.1   | Choline dehydrogenase                              |
| 1531 | 34.85 ± 7.61  | 1.6.99.3   | NADH dehydrogenase                                 |
| 1532 | 34.92 ± 8.39  | 1.4.1.2    | Glutamate dehydrogenase                            |
|      |               |            | 3-methyl-2-oxobutanoate dehydrogenase (2-          |
| 1533 | 36.77 ± 4.89  | 1.2.4.4    | methylpropanoyl-transferring)                      |
| 1534 | 40.46 ± 11.41 | 1.1.1.42   | Isocitrate dehydrogenase (NADP(+))                 |
| 1535 | 42.46 ± 6.46  | 1.1.1.22   | UDP-glucose 6-dehydrogenase                        |
| 1536 | 43.62 ± 8.72  | 1.1.5.3    | Glycerol-3-phosphate dehydrogenase                 |
| 1537 | 44.25 ± 27.05 | 1.1.5.2    | Quinoprotein glucose dehydrogenase (PQQ, quinone)  |
| 1538 | 45.31 ± 9.08  | 1.1.3.15   | (S)-2-hydroxy-acid oxidase                         |
| 1539 | 46.08 ± 24.04 | 1.1.2.8    | Alcohol dehydrogenase (cytochrome c)               |
| 1540 | 46.69 ± 7.82  | 1.2.1.18   | Malonate-semialdehyde dehydrogenase (acetylating)  |
|      |               |            | Glyceraldehyde-3-phosphate dehydrogenase           |
| 1541 | 46.77 ± 9.98  | 1.2.1.12   | (phosphorylating)                                  |
| 1542 | 47.38 ± 10.59 | 1.11.1.21  | Catalase peroxidase                                |
|      |               |            | Phosphogluconate dehydrogenase (NAD(+)-            |
| 1543 | 48.46 ± 10.81 | 1.1.1.343  | dependent, decarboxylating)                        |
| 1544 | 48.77 ± 23.80 | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase           |
| 1545 | 49.77 ± 16.04 | 1.2.1.8    | Betaine-aldehyde dehydrogenase                     |
| 1546 | 52.08 ± 11.60 | 1.14.14.5  | Alkanesulfonate monooxygenase                      |
|      |               |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate       |
| 1547 | 56.00 ± 6.77  | 1.17.7.1   | synthase (ferredoxin)                              |
| 1548 | 56.77 ± 16.22 | 1.1.1.91   | Aryl-alcohol dehydrogenase (NADP(+))               |
| 1549 | 57.08 ± 15.40 | 1.3.99.22  | Coproporphyrinogen dehydrogenase                   |
| 1550 | 58.00 ± 6.75  | 1.1.1.85   | 3-isopropylmalate dehydrogenase                    |
| 1551 | 58.15 ± 8.53  | 1.3.8.6    | Glutaryl-CoA dehydrogenase (ETF)                   |
| 1552 | 58.69 ± 18.80 | 1.1.1.157  | 3-hydroxybutyryl-CoA dehydrogenase                 |
| 1553 | 59.00 ± 12.94 | 1.1.1.3    | Homoserine dehydrogenase                           |
| 1554 | 59.23 ± 27.36 | 1.11.1.15  | Peroxiredoxin                                      |
| 1555 | 59.38 ± 30.71 | 1.7.1.15   | Nitrite reductase (NADH)                           |
| 1556 | 60.08 ± 12.33 | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
| 1557 | 60.62 ± 15.94 | 1.8.1.2    | Assimilatory sulfite reductase (NADPH)             |
| 1558 | 61.92 ± 16.59 | 1.14.13.22 | Cyclohexanone monooxygenase                        |
| 1559 | 65.15 ± 20.25 | 1.11.1.6   | Catalase                                           |
| 1560 | 65.69 ± 12.60 | 1.13.12.16 | Nitronate monooxygenase                            |
| 1561 | 67.15 ± 15.27 | 1.1.1.37   | Malate dehydrogenase                               |
| 1562 | 67.46 ± 18.11 | 1.13.11.27 | 4-hydroxyphenylpyruvate dioxygenase                |
|      |               |            |                                                    |

| 1563<br>1564 | 70.00 ± 16.98<br>70.23 ± 37.39 | 1.3.8.1<br>1.2.1.11 | Short-chain acyl-CoA dehydrogenase Aspartate-semialdehyde dehydrogenase |
|--------------|--------------------------------|---------------------|-------------------------------------------------------------------------|
| 1504         | 70.23 ± 37.33                  | 1.2.1.11            | Malate dehydrogenase (oxaloacetate-decarboxylating)                     |
| 1565         | 71.77 ± 46.52                  | 1.1.1.40            | (NADP(+))                                                               |
| 1566         | 71.92 ± 18.85                  | 1.4.1.1             | Alanine dehydrogenase                                                   |
| 1567         | 72.67 ± 12.36                  | 1.18.1.3            | FerredoxinNAD(+) reductase                                              |
| 1568         | 74.31 ± 19.24                  | 1.1.1.31            | 3-hydroxyisobutyrate dehydrogenase                                      |
| 1569         | 76.23 ± 17.02                  | 1.1.1.86            | Ketol-acid reductoisomerase (NADP(+))                                   |
| 1570         | 78.46 ± 16.27                  | 1.13.11.5           | Homogentisate 1,2-dioxygenase                                           |
| 1571         | 80.15 ± 53.81                  | 1.2.5.1             | Pyruvate dehydrogenase (quinone)                                        |
| 1572         | 80.15 ± 23.18                  | 1.2.1.41            | Glutamate-5-semialdehyde dehydrogenase                                  |
| 1573         | 81.85 ± 12.95                  | 1.1.1.267           | 1-deoxy-D-xylulose-5-phosphate reductoisomerase                         |
| 1574         | 82.31 ± 22.19                  | 1.14.13.40          | Anthraniloyl-CoA monooxygenase                                          |
| 1575         | 82.77 ± 18.75                  | 1.1.2.3             | L-lactate dehydrogenase (cytochrome)                                    |
| 1576         | 83.77 ± 20.05                  | 1.8.4.11            | Peptide-methionine (S)-S-oxide reductase                                |
| 1577         | 84.92 ± 8.63                   | 1.1.1.23            | Histidinol dehydrogenase                                                |
| 1578         | 85.08 ± 31.48                  | 1.2.7.1             | Pyruvate synthase                                                       |
| 1579         | 86.31 ± 19.12                  | 1.1.1.193           | 5-amino-6-(5-phosphoribosylamino)uracil reductase                       |
| 1580         | 86.54 ± 16.87                  | 1.4.3.16            | L-aspartate oxidase                                                     |
| 1581         | 86.77 ± 33.00                  | 1.5.1.5             | Methylenetetrahydrofolate dehydrogenase (NADP(+))                       |
|              |                                |                     | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si-                      |
| 1582         | 88.46 ± 14.70                  | 1.3.1.10            | specific)                                                               |
| 1583         | 88.69 ± 21.99                  | 1.4.7.1             | Glutamate synthase (ferredoxin)                                         |
| 1584         | 88.85 ± 36.10                  | 1.15.1.1            | Superoxide dismutase                                                    |
| 1585         | 89.62 ± 13.99                  | 1.4.1.3             | Glutamate dehydrogenase (NAD(P)(+))                                     |
| 1586         | 90.00 ± 17.18                  | 1.1.2.4             | D-lactate dehydrogenase (cytochrome)                                    |
| 1587         | 91.08 ± 22.32                  | 1.17.1.8            | 4-hydroxy-tetrahydrodipicolinate reductase                              |
| 1588         | 92.69 ± 21.24                  | 1.14.13.127         | 3-(3-hydroxy-phenyl)propanoic acid hydroxylase                          |
| 1589         | 94.54 ± 58.43                  | 1.14.19.1           | Stearoyl-CoA 9-desaturase                                               |
| 1590         | 94.62 ± 9.62                   | 1.5.1.20            | Methylenetetrahydrofolate reductase (NAD(P)H)                           |
| 1591         | 94.69 ± 33.48                  | 1.5.5.1             | Electron-transferring-flavoprotein dehydrogenase                        |
| 1592         | 95.38 ± 17.26                  | 1.1.1.94            | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))                          |
| 1593         | 96.85 ± 32.75                  | 1.1.1.38            | Malate dehydrogenase (oxaloacetate-decarboxylating)                     |
| 1594         | 96.85 ± 62.99                  | 1.12.99.6           | Hydrogenase (acceptor)                                                  |
| 1595         | 97.31 ± 34.97                  | 1.1.1.25            | Shikimate dehydrogenase                                                 |
| 1596         | 98.85 ± 17.65                  | 1.1.1.169           | 2-dehydropantoate 2-reductase                                           |
| 1597         | 99.23 ± 12.56                  | 1.2.1.38            | N-acetyl-gamma-glutamyl-phosphate reductase                             |
| 1598         | 103.14 ± 137.36                | 1.14.13.124         | Phenylalanine N-monooxygenase                                           |
| 1599         | 103.23 ± 17.57                 | 1.13.11.2           | Catechol 2,3-dioxygenase                                                |
|              | 103.62 ±                       |                     |                                                                         |
| 160          | 0 15.32                        | 1.3.1.98            | UDP-N-acetylmuramate dehydrogenase                                      |

| (12 metagenomes) |               |                  |                                                     |  |
|------------------|---------------|------------------|-----------------------------------------------------|--|
| row              | Avg.rank      | <b>EC</b> number | Oxidoreductase                                      |  |
| 1601             | 1.17 ± 0.37   | 1.6.5.3          | NADH:ubiquinone reductase (H(+)-translocating)      |  |
| 1602             | 2.42 ± 1.04   | 1.17.4.1         | Ribonucleoside-diphosphate reductase                |  |
| 1603             | 3.08 ± 1.61   | 1.9.3.1          | Cytochrome-c oxidase                                |  |
| 1604             | 5.75 ± 1.53   | 1.4.1.13         | Glutamate synthase (NADPH)                          |  |
| 1605             | 8.42 ± 2.06   | 1.3.5.1          | Succinate dehydrogenase (quinone)                   |  |
| 1606             | 12.67 ± 5.86  | 1.8.1.4          | Dihydrolipoyl dehydrogenase                         |  |
| 1607             | 12.83 ± 5.79  | 1.1.1.205        | IMP dehydrogenase                                   |  |
| 1608             | 13.00 ± 4.20  | 1.2.1.3          | Aldehyde dehydrogenase (NAD(+))                     |  |
| 1609             | 13.33 ± 6.28  | 1.1.1.1          | Alcohol dehydrogenase                               |  |
| 1610             | 13.58 ± 9.35  | 1.2.1.2          | Formate dehydrogenase                               |  |
| 1611             | 14.00 ± 7.45  | 1.1.1.100        | 3-oxoacyl-[acyl-carrier-protein] reductase          |  |
| 1612             | 14.00 ± 16.63 | 1.2.4.1          | Pyruvate dehydrogenase (acetyl-transferring)        |  |
| 1613             | 14.25 ± 8.68  | 1.2.7.3          | 2-oxoglutarate synthase                             |  |
| 1614             | 17.58 ± 11.43 | 1.2.7.1          | ,                                                   |  |
| 1615             | 19.83 ± 3.44  | 1.8.1.9          | Thioredoxin-disulfide reductase                     |  |
| 1616             | 21.42 ± 12.80 | 1.1.5.3          | Glycerol-3-phosphate dehydrogenase                  |  |
| 1617             | 21.50 ± 5.09  | 1.1.1.95         | Phosphoglycerate dehydrogenase                      |  |
|                  |               |                  | Malate dehydrogenase (oxaloacetate-decarboxylating) |  |
| 1618             | 24.67 ± 5.04  | 1.1.1.40         | (NADP(+))                                           |  |
| 1619             | 25.08 ± 7.50  | 1.1.1.22         | UDP-glucose 6-dehydrogenase                         |  |
| 1620             | 25.58 ± 8.18  | 1.1.1.42         | Isocitrate dehydrogenase (NADP(+))                  |  |
| 1621             | 26.58 ± 25.82 | 1.2.99.2         | Carbon-monoxide dehydrogenase (acceptor)            |  |
| 1622             | 29.67 ± 17.26 | 1.1.1.35         | 3-hydroxyacyl-CoA dehydrogenase                     |  |
| 1623             | 30.42 ± 25.10 | 1.4.4.2          | Glycine dehydrogenase (aminomethyl-transferring)    |  |
| 1624             | 31.25 ± 10.69 | 1.6.99.3         | NADH dehydrogenase                                  |  |
| 1625             | 31.25 ± 20.76 | 1.3.8.7          | Medium-chain acyl-CoA dehydrogenase                 |  |
| 1626             | 32.25 ± 12.46 | 1.5.3.1          | Sarcosine oxidase                                   |  |
| 1627             | 32.67 ± 19.10 | 1.5.5.1          | Electron-transferring-flavoprotein dehydrogenase    |  |
| 1628             | 34.33 ± 33.65 | 1.2.7.5          | Aldehyde ferredoxin oxidoreductase                  |  |
|                  |               |                  | Glyceraldehyde-3-phosphate dehydrogenase            |  |
| 1629             | 36.67 ± 7.34  | 1.2.1.12         | (phosphorylating)                                   |  |
| 1630             | 37.25 ± 9.05  | 1.11.1.15        | Peroxiredoxin                                       |  |
| 1631             | 37.50 ± 7.35  | 1.2.1.16         | Succinate-semialdehyde dehydrogenase (NAD(P)(+))    |  |
| 1632             | 38.75 ± 19.71 | 1.4.1.3          | Glutamate dehydrogenase (NAD(P)(+))                 |  |
| 1633             | 39.08 ± 28.13 | 1.3.99.26        | All-trans-zeta-carotene desaturase                  |  |
| 1634             | 40.08 ± 12.30 | 1.4.1.1          | Alanine dehydrogenase                               |  |
| 1635             | 40.25 ± 24.31 | 1.11.1.21        | Catalase peroxidase                                 |  |
| 1636             | 40.67 ± 9.76  | 1.8.4.11         | Peptide-methionine (S)-S-oxide reductase            |  |
| 1637             | 46.00 ± 42.07 | 1.2.4.2          | Oxoglutarate dehydrogenase (succinyl-transferring)  |  |
| 1638             | 47.17 ± 8.27  | 1.2.1.11         | Aspartate-semialdehyde dehydrogenase                |  |
| 1639             | 47.67 ± 12.13 | 1.6.5.5          | NADPH:quinone reductase                             |  |

| 1 ( 1 (                                                                                                              | 40 50 + 54 02                                                                                                                                                                                                                   | 1 7 00 4                                                                                                                                                                        | Nituata vaduatasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1640                                                                                                                 | 48.50 ± 54.83                                                                                                                                                                                                                   | 1.7.99.4                                                                                                                                                                        | Nitrate reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1641                                                                                                                 | 48.58 ± 31.00                                                                                                                                                                                                                   | 1.2.1.88                                                                                                                                                                        | L-glutamate gamma-semialdehyde dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1642                                                                                                                 | 48.75 ± 8.53                                                                                                                                                                                                                    | 1.1.1.86                                                                                                                                                                        | Ketol-acid reductoisomerase (NADP(+))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1643                                                                                                                 | 50.58 ± 5.35                                                                                                                                                                                                                    | 1.5.1.5                                                                                                                                                                         | Methylenetetrahydrofolate dehydrogenase (NADP(+))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1644                                                                                                                 | 53.50 ± 22.25                                                                                                                                                                                                                   | 1.1.1.157                                                                                                                                                                       | 3-hydroxybutyryl-CoA dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1645                                                                                                                 | 53.58 ± 34.99                                                                                                                                                                                                                   | 1.6.1.2                                                                                                                                                                         | NAD(P)(+) transhydrogenase (Re/Si-specific)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1646                                                                                                                 | 53.92 ± 5.06                                                                                                                                                                                                                    | 1.15.1.1                                                                                                                                                                        | Superoxide dismutase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1647                                                                                                                 | 54.92 ± 8.60                                                                                                                                                                                                                    | 1.1.1.3                                                                                                                                                                         | Homoserine dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1648                                                                                                                 | 57.42 ± 6.97                                                                                                                                                                                                                    | 1.1.1.37                                                                                                                                                                        | Malate dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1649                                                                                                                 | 58.25 ± 27.38                                                                                                                                                                                                                   | 1.8.4.8                                                                                                                                                                         | Phosphoadenylyl-sulfate reductase (thioredoxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                 | 3-methyl-2-oxobutanoate dehydrogenase (2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1650                                                                                                                 | 58.25 ± 48.63                                                                                                                                                                                                                   | 1.2.4.4                                                                                                                                                                         | methylpropanoyl-transferring)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1651                                                                                                                 | 58.83 ± 15.47                                                                                                                                                                                                                   | 1.5.1.20                                                                                                                                                                        | Methylenetetrahydrofolate reductase (NAD(P)H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1652                                                                                                                 | 61.33 ± 10.92                                                                                                                                                                                                                   | 1.1.1.85                                                                                                                                                                        | 3-isopropylmalate dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1653                                                                                                                 | 61.75 ± 37.33                                                                                                                                                                                                                   | 1.18.1.3                                                                                                                                                                        | FerredoxinNAD(+) reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1654                                                                                                                 | 66.75 ± 13.14                                                                                                                                                                                                                   | 1.1.1.23                                                                                                                                                                        | Histidinol dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                 | Phosphogluconate dehydrogenase (NAD(+)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1655                                                                                                                 | 68.83 ± 12.29                                                                                                                                                                                                                   | 1.1.1.343                                                                                                                                                                       | dependent, decarboxylating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1656                                                                                                                 | 71.17 ± 24.74                                                                                                                                                                                                                   | 1.3.8.6                                                                                                                                                                         | Glutaryl-CoA dehydrogenase (ETF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1657                                                                                                                 | 72.42 ± 40.29                                                                                                                                                                                                                   | 1.4.1.2                                                                                                                                                                         | Glutamate dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1658                                                                                                                 | 72.50 ± 28.09                                                                                                                                                                                                                   | 1.2.1.41                                                                                                                                                                        | Glutamate-5-semialdehyde dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1659                                                                                                                 | 73.00 ± 23.12                                                                                                                                                                                                                   | 1.2.1.70                                                                                                                                                                        | Glutamyl-tRNA reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                 | 2,5-didehydrogluconate reductase (2-dehydro-L-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1660                                                                                                                 | 73.33 ± 26.54                                                                                                                                                                                                                   | 1.1.1.346                                                                                                                                                                       | gulonate-forming)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1661                                                                                                                 |                                                                                                                                                                                                                                 | 1.8.4.12                                                                                                                                                                        | Peptide-methionine (R)-S-oxide reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TOOT                                                                                                                 | 78.08 ± 19.47                                                                                                                                                                                                                   | 1.0.4.12                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1662                                                                                                                 | 78.08 ± 19.47<br>78.42 ± 29.71                                                                                                                                                                                                  | 1.1.5.2                                                                                                                                                                         | Quinoprotein glucose dehydrogenase (PQQ, quinone)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                 | Quinoprotein glucose dehydrogenase (PQQ, quinone) (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1662                                                                                                                 | 78.42 ± 29.71                                                                                                                                                                                                                   | 1.1.5.2                                                                                                                                                                         | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1662<br>1663                                                                                                         | 78.42 ± 29.71<br>79.00 ± 29.14                                                                                                                                                                                                  | 1.1.5.2<br>1.17.7.1                                                                                                                                                             | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1662<br>1663<br>1664                                                                                                 | 78.42 ± 29.71<br>79.00 ± 29.14<br>79.00 ± 33.52                                                                                                                                                                                 | 1.1.5.2<br>1.17.7.1<br>1.1.1.49                                                                                                                                                 | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+))                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1662<br>1663<br>1664<br>1665                                                                                         | 78.42 ± 29.71<br>79.00 ± 29.14<br>79.00 ± 33.52<br>79.25 ± 22.00                                                                                                                                                                | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4                                                                                                                                      | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1662<br>1663<br>1664<br>1665<br>1666                                                                                 | 78.42 ± 29.71<br>79.00 ± 29.14<br>79.00 ± 33.52<br>79.25 ± 22.00<br>83.83 ± 46.70                                                                                                                                               | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22                                                                                                                         | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase                                                                                                                                                                                                                                                                                                                                                                 |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667                                                                         | 78.42 ± 29.71<br>79.00 ± 29.14<br>79.00 ± 33.52<br>79.25 ± 22.00<br>83.83 ± 46.70<br>83.92 ± 25.25                                                                                                                              | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1                                                                                                             | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase                                                                                                                                                                                                                                                                                                                                           |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667<br>1668                                                                 | 78.42 ± 29.71<br>79.00 ± 29.14<br>79.00 ± 33.52<br>79.25 ± 22.00<br>83.83 ± 46.70<br>83.92 ± 25.25<br>84.67 ± 52.97                                                                                                             | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1<br>1.7.7.1                                                                                                  | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase Ferredoxinnitrite reductase Glutamate dehydrogenase (NADP(+))                                                                                                                                                                                                                                                                             |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667<br>1668<br>1669                                                         | 78.42 ± 29.71<br>79.00 ± 29.14<br>79.00 ± 33.52<br>79.25 ± 22.00<br>83.83 ± 46.70<br>83.92 ± 25.25<br>84.67 ± 52.97<br>85.92 ± 30.40                                                                                            | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1<br>1.7.7.1<br>1.4.1.4                                                                                       | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase Ferredoxinnitrite reductase Glutamate dehydrogenase (NADP(+)) UDP-N-acetylglucosamine 6-dehydrogenase                                                                                                                                                                                                                                     |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667<br>1668<br>1669<br>1670                                                 | 78.42 ± 29.71<br>79.00 ± 29.14<br>79.00 ± 33.52<br>79.25 ± 22.00<br>83.83 ± 46.70<br>83.92 ± 25.25<br>84.67 ± 52.97<br>85.92 ± 30.40<br>87.00 ± 22.73                                                                           | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1<br>1.7.7.1<br>1.4.1.4<br>1.1.1.136                                                                          | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase Ferredoxinnitrite reductase Glutamate dehydrogenase (NADP(+)) UDP-N-acetylglucosamine 6-dehydrogenase Aryl-alcohol dehydrogenase (NADP(+))                                                                                                                                                                                                |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667<br>1668<br>1669<br>1670<br>1671                                         | 78.42 ± 29.71  79.00 ± 29.14  79.00 ± 33.52  79.25 ± 22.00  83.83 ± 46.70  83.92 ± 25.25  84.67 ± 52.97  85.92 ± 30.40  87.00 ± 22.73  87.83 ± 23.94  90.08 ± 47.38                                                             | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1<br>1.7.7.1<br>1.4.1.4<br>1.1.1.136<br>1.1.1.91                                                              | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase Ferredoxinnitrite reductase Glutamate dehydrogenase (NADP(+)) UDP-N-acetylglucosamine 6-dehydrogenase Aryl-alcohol dehydrogenase (NADP(+)) Phenylacetyl-CoA 1,2-epoxidase                                                                                                                                                                 |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667<br>1668<br>1669<br>1670<br>1671<br>1672<br>1673                         | 78.42 ± 29.71  79.00 ± 29.14  79.00 ± 33.52  79.25 ± 22.00  83.83 ± 46.70  83.92 ± 25.25  84.67 ± 52.97  85.92 ± 30.40  87.00 ± 22.73  87.83 ± 23.94  90.08 ± 47.38  90.25 ± 34.22                                              | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1<br>1.7.7.1<br>1.4.1.4<br>1.1.1.136<br>1.1.1.91<br>1.14.13.149<br>1.4.3.16                                   | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase Ferredoxinnitrite reductase Glutamate dehydrogenase (NADP(+)) UDP-N-acetylglucosamine 6-dehydrogenase Aryl-alcohol dehydrogenase (NADP(+)) Phenylacetyl-CoA 1,2-epoxidase L-aspartate oxidase                                                                                                                                             |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667<br>1668<br>1669<br>1670<br>1671<br>1672<br>1673<br>1674                 | 78.42 ± 29.71  79.00 ± 29.14  79.00 ± 33.52  79.25 ± 22.00  83.83 ± 46.70  83.92 ± 25.25  84.67 ± 52.97  85.92 ± 30.40  87.00 ± 22.73  87.83 ± 23.94  90.08 ± 47.38  90.25 ± 34.22  90.25 ± 39.35                               | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1<br>1.7.7.1<br>1.4.1.4<br>1.1.1.136<br>1.1.1.91<br>1.14.13.149<br>1.4.3.16<br>1.3.5.2                        | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase Ferredoxinnitrite reductase Glutamate dehydrogenase (NADP(+)) UDP-N-acetylglucosamine 6-dehydrogenase Aryl-alcohol dehydrogenase (NADP(+)) Phenylacetyl-CoA 1,2-epoxidase L-aspartate oxidase Dihydroorotate dehydrogenase (quinone)                                                                                                      |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667<br>1668<br>1669<br>1670<br>1671<br>1672<br>1673<br>1674<br>1675         | 78.42 ± 29.71  79.00 ± 29.14  79.00 ± 33.52  79.25 ± 22.00  83.83 ± 46.70  83.92 ± 25.25  84.67 ± 52.97  85.92 ± 30.40  87.00 ± 22.73  87.83 ± 23.94  90.08 ± 47.38  90.25 ± 34.22  90.25 ± 39.35  91.50 ± 46.29                | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1<br>1.7.7.1<br>1.4.1.4<br>1.1.1.136<br>1.1.1.91<br>1.14.13.149<br>1.4.3.16<br>1.3.5.2<br>1.17.1.2            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase Ferredoxinnitrite reductase Glutamate dehydrogenase (NADP(+)) UDP-N-acetylglucosamine 6-dehydrogenase Aryl-alcohol dehydrogenase (NADP(+)) Phenylacetyl-CoA 1,2-epoxidase L-aspartate oxidase Dihydroorotate dehydrogenase (quinone) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase                                                   |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667<br>1668<br>1669<br>1670<br>1671<br>1672<br>1673<br>1674<br>1675<br>1676 | 78.42 ± 29.71  79.00 ± 29.14  79.00 ± 33.52  79.25 ± 22.00  83.83 ± 46.70  83.92 ± 25.25  84.67 ± 52.97  85.92 ± 30.40  87.00 ± 22.73  87.83 ± 23.94  90.08 ± 47.38  90.25 ± 34.22  90.25 ± 39.35  91.50 ± 46.29  92.08 ± 23.76 | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1<br>1.7.7.1<br>1.4.1.4<br>1.1.1.36<br>1.1.1.91<br>1.14.13.149<br>1.4.3.16<br>1.3.5.2<br>1.17.1.2<br>1.2.1.18 | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase Ferredoxinnitrite reductase Glutamate dehydrogenase (NADP(+)) UDP-N-acetylglucosamine 6-dehydrogenase Aryl-alcohol dehydrogenase (NADP(+)) Phenylacetyl-CoA 1,2-epoxidase L-aspartate oxidase Dihydroorotate dehydrogenase (quinone) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase Malonate-semialdehyde dehydrogenase (acetylating) |
| 1662<br>1663<br>1664<br>1665<br>1666<br>1667<br>1668<br>1669<br>1670<br>1671<br>1672<br>1673<br>1674<br>1675         | 78.42 ± 29.71  79.00 ± 29.14  79.00 ± 33.52  79.25 ± 22.00  83.83 ± 46.70  83.92 ± 25.25  84.67 ± 52.97  85.92 ± 30.40  87.00 ± 22.73  87.83 ± 23.94  90.08 ± 47.38  90.25 ± 34.22  90.25 ± 39.35  91.50 ± 46.29                | 1.1.5.2<br>1.17.7.1<br>1.1.1.49<br>1.8.5.4<br>1.3.99.22<br>1.1.99.1<br>1.7.7.1<br>1.4.1.4<br>1.1.1.136<br>1.1.1.91<br>1.14.13.149<br>1.4.3.16<br>1.3.5.2<br>1.17.1.2            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin) Glucose-6-phosphate dehydrogenase (NADP(+)) Sulfide:quinone reductase Coproporphyrinogen dehydrogenase Choline dehydrogenase Ferredoxinnitrite reductase Glutamate dehydrogenase (NADP(+)) UDP-N-acetylglucosamine 6-dehydrogenase Aryl-alcohol dehydrogenase (NADP(+)) Phenylacetyl-CoA 1,2-epoxidase L-aspartate oxidase Dihydroorotate dehydrogenase (quinone) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase                                                   |

|       |                              |                      | 5 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              |
|-------|------------------------------|----------------------|-----------------------------------------------------|
| 1670  | 06 00 + 27 67                | 1 2 1 10             | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si-  |
| 1679  | 96.00 ± 27.67                | 1.3.1.10             | specific)                                           |
| 1680  | 98.67 ± 21.24                | 1.17.1.8             | 4-hydroxy-tetrahydrodipicolinate reductase          |
| 1681  | 99.00 ± 41.09                | 1.5.1.3              | Dihydrofolate reductase                             |
| 1682  | 103.25 ± 38.09               | 1.20.4.1             | Arsenate reductase (glutaredoxin)                   |
| 1683  | 104.25 ± 24.60               | 1.1.1.38             | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 1684  | 104.92 ± 33.81               | 1.1.1.271            | GDP-L-fucose synthase                               |
| 1685  | 105.33 ± 47.90               | 1.1.3.15             | (S)-2-hydroxy-acid oxidase                          |
| 1686  | 106.25 ± 30.53               | 1.1.2.4              | D-lactate dehydrogenase (cytochrome)                |
| 1687  | 106.58 ± 28.30               | 1.5.1.2              | Pyrroline-5-carboxylate reductase                   |
| 1688  | 106.83 ± 25.77               | 1.8.1.8              | Protein-disulfide reductase                         |
| 1689  | 107.08 ± 15.05               | 1.1.1.133            | dTDP-4-dehydrorhamnose reductase                    |
| 1690  | 107.33 ± 30.50               | 1.3.1.12             | Prephenate dehydrogenase                            |
| 1691  | 110.92 ± 36.39               | 1.1.1.267            | 1-deoxy-D-xylulose-5-phosphate reductoisomerase     |
| 1692  | 111.92 ± 31.32               | 1.11.1.5             | Cytochrome-c peroxidase                             |
| 1693  | 112.08 ± 67.91               | 1.12.99.6            | Hydrogenase (acceptor)                              |
| 1694  | 112.73 ± 22.83               | 1.1.1.262            | 4-hydroxythreonine-4-phosphate dehydrogenase        |
| 1695  | 113.10 ± 88.43               | 1.2.7.8              | Indolepyruvate ferredoxin oxidoreductase            |
| 1696  | 114.75 ± 42.31               | 1.1.1.94             | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))      |
| 1697  | 116.73 ± 26.88               | 1.3.1.98             | UDP-N-acetylmuramate dehydrogenase                  |
|       |                              |                      | Glyceraldehyde-3-phosphate dehydrogenase            |
| 1698  | 116.75 ± 65.04               | 1.2.1.59             | (NAD(P)(+)) (phosphorylating)                       |
| 1699  | 116.82 ± 99.39               | 1.97.1.4             | [Formate-C-acetyltransferase]-activating enzyme     |
| 1700  | 117.58 ± 83.04               | 1.7.2.4              | Nitrous-oxide reductase                             |
| Subte | raneum (8 metage             | enomes)              |                                                     |
| row   | Avg.rank                     | EC number            | Oxidoreductase                                      |
| 1701  | 1.12 ± 0.33                  | 1.6.5.3              | NADH:ubiquinone reductase (H(+)-translocating)      |
| 1702  | 4.25 ± 2.38                  | 1.17.4.1             | Ribonucleoside-diphosphate reductase                |
| 1703  | 4.62 ± 3.04                  | 1.4.1.13             | Glutamate synthase (NADPH)                          |
| 1704  | 5.62 ± 3.28                  | 1.2.7.1              | Pyruvate synthase                                   |
| 1705  | 13.38 ± 5.52                 | 1.2.7.3              | 2-oxoglutarate synthase                             |
| 1706  | 15.25 ± 13.12                | 1.3.5.1              | Succinate dehydrogenase (quinone)                   |
| 1707  |                              | 4242                 | Fauncata dalamenta                                  |
|       | 16.50 ± 7.07                 | 1.2.1.2              | Formate dehydrogenase                               |
| 1708  | 16.50 ± 7.07<br>19.00 ± 6.32 | 1.2.1.2<br>1.1.1.205 | IMP dehydrogenase                                   |
| 1708  |                              |                      | , -                                                 |

1.12.99.6 Hydrogenase (acceptor)

1.9.3.1 Cytochrome-c oxidase

1.7.99.4 Nitrate reductase

1.4.3.16 L-aspartate oxidase

1.3.99.22 Coproporphyrinogen dehydrogenase

1.1.1.42 Isocitrate dehydrogenase (NADP(+))

1710

1711

1712

1713

1714

1715

21.62 ± 24.83

21.88 ± 21.89

22.00 ± 10.58

24.38 ± 26.49

24.75 ± 18.86

26.00 ± 5.61

| 4=46 | 27.00 . 02.46 | 4 40 6 4   | A.U.                                                |
|------|---------------|------------|-----------------------------------------------------|
| 1716 | 27.88 ± 32.46 | 1.18.6.1   | Nitrogenase                                         |
| 1717 | 30.12 ± 8.24  | 1.8.1.9    | Thioredoxin-disulfide reductase                     |
| 1718 | 31.75 ± 8.60  | 1.2.1.11   | Aspartate-semialdehyde dehydrogenase                |
| 1719 | 33.00 ± 6.56  | 1.1.1.85   | 3-isopropylmalate dehydrogenase                     |
| 1720 | 33.12 ± 14.99 | 1.1.1.95   | Phosphoglycerate dehydrogenase                      |
| 1721 | 33.12 ± 7.27  | 1.1.1.3    | Homoserine dehydrogenase                            |
| 1722 | 33.38 ± 7.61  | 1.1.1.86   | Ketol-acid reductoisomerase (NADP(+))               |
| 1723 | 33.62 ± 11.78 | 1.1.1.22   | UDP-glucose 6-dehydrogenase                         |
| 1724 | 33.75 ± 9.05  | 1.1.1.23   | Histidinol dehydrogenase                            |
| 1725 | 35.00 ± 22.99 | 1.12.1.2   | Hydrogen dehydrogenase                              |
|      |               |            | Malate dehydrogenase (oxaloacetate-decarboxylating) |
| 1726 | 36.00 ± 28.92 | 1.1.1.40   | (NADP(+))                                           |
| 1727 | 37.62 ± 33.62 | 1.11.1.15  | Peroxiredoxin                                       |
| 1728 | 38.00 ± 27.56 | 1.8.1.4    | Dihydrolipoyl dehydrogenase                         |
| 1729 | 38.38 ± 35.18 | 1.8.98.1   | CoBCoM heterodisulfide reductase                    |
| 1730 | 38.38 ± 25.17 | 1.4.4.2    | Glycine dehydrogenase (aminomethyl-transferring)    |
| 1731 | 38.75 ± 32.85 | 1.2.4.1    | Pyruvate dehydrogenase (acetyl-transferring)        |
|      |               |            | (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate        |
| 1732 | 38.88 ± 7.99  | 1.17.7.1   | synthase (ferredoxin)                               |
| 1733 | 40.12 ± 3.89  | 1.2.1.41   | Glutamate-5-semialdehyde dehydrogenase              |
| 1734 | 42.12 ± 47.21 | 1.97.1.4   | [Formate-C-acetyltransferase]-activating enzyme     |
| 1735 | 42.50 ± 9.85  | 1.2.1.38   | N-acetyl-gamma-glutamyl-phosphate reductase         |
| 1736 | 43.25 ± 10.63 | 1.1.1.100  | 3-oxoacyl-[acyl-carrier-protein] reductase          |
| 1737 | 44.75 ± 6.81  | 1.5.1.5    | Methylenetetrahydrofolate dehydrogenase (NADP(+))   |
| 1738 | 46.50 ± 49.89 | 1.8.99.2   | Adenylyl-sulfate reductase                          |
| 1739 | 47.38 ± 33.82 | 1.2.4.2    | Oxoglutarate dehydrogenase (succinyl-transferring)  |
| 1740 | 49.38 ± 9.87  | 1.1.1.267  | 1-deoxy-D-xylulose-5-phosphate reductoisomerase     |
| 1741 | 49.88 ± 33.74 | 1.8.1.8    | Protein-disulfide reductase                         |
| 1742 | 50.25 ± 46.52 | 1.8.5.4    | Sulfide:quinone reductase                           |
| 1743 | 51.50 ± 14.45 | 1.2.1.70   | Glutamyl-tRNA reductase                             |
| 1744 | 51.75 ± 18.86 | 1.1.1.133  | dTDP-4-dehydrorhamnose reductase                    |
| 1745 | 53.25 ± 12.35 | 1.17.1.2   | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase  |
| 1746 | 53.75 ± 11.21 | 1.13.12.16 | Nitronate monooxygenase                             |
| 1747 | 54.00 ± 47.69 | 1.8.99.3   | Hydrogensulfite reductase                           |
| 1748 | 54.25 ± 28.86 | 1.1.1.1    | Alcohol dehydrogenase                               |
| 1749 | 54.75 ± 45.73 | 1.2.7.5    | Aldehyde ferredoxin oxidoreductase                  |
| 1750 | 55.62 ± 44.50 | 1.1.3.15   | (S)-2-hydroxy-acid oxidase                          |
| 1751 | 55.88 ± 41.75 | 1.2.7.8    | Indolepyruvate ferredoxin oxidoreductase            |
| 1752 | 56.62 ± 61.69 | 1.2.1.43   | Formate dehydrogenase (NADP(+))                     |
| 1753 | 56.62 ± 65.63 | 1.7.1.15   | Nitrite reductase (NADH)                            |
| 1754 | 57.38 ± 22.53 | 1.1.1.37   | Malate dehydrogenase                                |
| 1755 | 62.25 ± 41.61 | 1.17.4.2   | Ribonucleoside-triphosphate reductase               |
| 1756 | 62.38 ± 9.10  | 1.1.1.193  | 5-amino-6-(5-phosphoribosylamino)uracil reductase   |
|      |               |            | , , , , , ,                                         |

| 1757 | 63.00 ± 19.09  | 1.17.1.8  | 4-hydroxy-tetrahydrodipicolinate reductase         |
|------|----------------|-----------|----------------------------------------------------|
| 1758 | 64.50 ± 24.80  | 1.1.1.271 | GDP-L-fucose synthase                              |
| 1759 | 64.62 ± 24.87  | 1.5.1.20  | Methylenetetrahydrofolate reductase (NAD(P)H)      |
| 1760 | 67.62 ± 14.76  | 1.1.1.94  | Glycerol-3-phosphate dehydrogenase (NAD(P)(+))     |
| 1761 | 68.00 ± 10.56  | 1.3.1.98  | UDP-N-acetylmuramate dehydrogenase                 |
| 1762 | 72.50 ± 20.27  | 1.3.1.12  | Prephenate dehydrogenase                           |
| 1763 | 77.38 ± 17.03  | 1.1.1.25  | Shikimate dehydrogenase                            |
| 1764 | 79.38 ± 46.46  | 1.11.1.5  | Cytochrome-c peroxidase                            |
| 1765 | 80.12 ± 14.06  | 1.15.1.1  | Superoxide dismutase                               |
| 1766 | 80.25 ± 46.35  | 1.11.1.21 | Catalase peroxidase                                |
| 1767 | 82.38 ± 24.24  | 1.1.1.262 | 4-hydroxythreonine-4-phosphate dehydrogenase       |
| 1768 | 83.62 ± 24.18  | 1.2.1.16  | Succinate-semialdehyde dehydrogenase (NAD(P)(+))   |
| 1769 | 83.62 ± 52.73  | 1.6.1.2   | NAD(P)(+) transhydrogenase (Re/Si-specific)        |
|      |                |           | Enoyl-[acyl-carrier-protein] reductase (NADPH, Si- |
| 1770 | 84.75 ± 46.41  | 1.3.1.10  | specific)                                          |
| 1771 | 86.38 ± 66.10  | 1.2.7.4   | Carbon-monoxide dehydrogenase (ferredoxin)         |
| 1772 | 86.88 ± 32.52  | 1.3.5.2   | Dihydroorotate dehydrogenase (quinone)             |
| 1773 | 87.00 ± 20.07  | 1.20.4.1  | Arsenate reductase (glutaredoxin)                  |
| 1774 | 87.12 ± 19.60  | 1.6.99.3  | NADH dehydrogenase                                 |
| 1775 | 87.12 ± 52.92  | 1.21.98.1 | Cyclic dehypoxanthinyl futalosine synthase         |
| 1776 | 87.50 ± 43.55  | 1.12.1.3  | Hydrogen dehydrogenase (NADP(+))                   |
| 1777 | 87.88 ± 26.04  | 1.18.1.2  | FerredoxinNADP(+) reductase                        |
| 1778 | 88.00 ± 45.58  | 1.1.1.35  | 3-hydroxyacyl-CoA dehydrogenase                    |
| 1779 | 88.50 ± 17.40  | 1.5.1.2   | Pyrroline-5-carboxylate reductase                  |
| 1780 | 89.88 ± 32.46  | 1.8.4.11  | Peptide-methionine (S)-S-oxide reductase           |
| 1781 | 92.00 ± 21.53  | 1.17.99.6 | Epoxyqueuosine reductase                           |
| 1782 | 96.50 ± 69.60  | 1.4.1.4   | Glutamate dehydrogenase (NADP(+))                  |
| 1783 | 97.25 ± 29.61  | 1.3.3.3   | Coproporphyrinogen oxidase                         |
| 1784 | 99.00 ± 27.08  | 1.3.1.76  | Precorrin-2 dehydrogenase                          |
| 1785 | 100.50 ± 17.42 | 1.6.5.2   | NAD(P)H dehydrogenase (quinone)                    |
| 1786 | 102.75 ± 37.94 | 1.1.1.49  | Glucose-6-phosphate dehydrogenase (NADP(+))        |
| 1787 | 104.38 ± 31.67 | 1.16.3.1  | Ferroxidase                                        |
| 1788 | 105.25 ± 48.95 | 1.3.8.7   | Medium-chain acyl-CoA dehydrogenase                |
| 1789 | 107.12 ± 25.82 | 1.2.1.3   | Aldehyde dehydrogenase (NAD(+))                    |
| 1790 | 107.50 ± 29.51 | 1.4.1.1   | Alanine dehydrogenase                              |
| 1791 | 108.38 ± 32.11 | 1.2.1.88  | L-glutamate gamma-semialdehyde dehydrogenase       |
| 1792 | 108.50 ± 39.65 | 1.7.1.13  | PreQ(1) synthase                                   |
| 1793 | 108.62 ± 42.35 | 1.3.1.14  | Dihydroorotate dehydrogenase (NAD(+))              |
| 1794 | 108.75 ± 28.18 | 1.1.5.3   | Glycerol-3-phosphate dehydrogenase                 |
| 1795 | 109.00 ± 38.68 | 1.17.1.1  | CDP-4-dehydro-6-deoxyglucose reductase             |
| 1796 | 109.00 ± 30.34 | 1.4.1.3   | Glutamate dehydrogenase (NAD(P)(+))                |
| 1797 | 109.50 ± 43.30 | 1.10.2.2  | Quinolcytochrome-c reductase                       |
| 1798 | 110.62 ± 51.51 | 1.7.2.1   | Nitrite reductase (NO-forming)                     |
|      |                |           |                                                    |

| 1799 | 111.62 ± 55.35 | 1.7.99.1 | Hydroxylamine reductase                  |
|------|----------------|----------|------------------------------------------|
| 1800 | 115.00 ± 47.75 | 1.2.99.2 | Carbon-monoxide dehydrogenase (acceptor) |

#### REFERENCES

- 1. C. Luo, D. Tsementzi, N. Kyrpides, T. Read, K. T. Konstantinidis, Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. *PLoS One.* **7**, e30087 (2012).
- 2. M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, M. Tanabe, KEGG for integration and interpretation of large-scale molecular data sets. *Nucleic Acids Res.* **40** (2012), doi:10.1093/nar/gkr988.
- 3. M. H. Saier *et al.*, The transporter classification database (TCDB): recent advances. *Nucleic Acids Res.* **44**, D372-9 (2016).
- 4. B. Buchfink, C. Xie, D. H. Huson, Fast and sensitive protein alignment using DIAMOND. *Nat. Methods.* **12**, 59–60 (2014).
- 5. L. Philippot *et al.*, The ecological coherence of high bacterial taxonomic ranks. *Nat. Rev. Microbiol.* **8**, 523–529 (2010).
- 6. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).
- 7. P. J. McMurdie, S. Holmes, Waste not, want not: why rarefying microbiome data is inadmissible. *PLoS Comput. Biol.* **10**, e1003531 (2014).
- 8. G. B. Gloor, J. M. Macklaim, V. Pawlowsky-Glahn, J. J. Egozcue, Microbiome datasets are compositional: And this is not optional. *Front. Microbiol.* **8**, 1–6 (2017).
- 9. C. Zhu *et al.*, Functional sequencing read annotation for high precision microbiome analysis. *Nucleic Acids Res.* (2018), doi:10.1093/nar/gkx1209.
- 10. D. N. Reshef *et al.*, Detecting novel associations in large data sets. *Science (80-. ).* **334**, 1518–1524 (2011).
- 11. D. Tang, M. Wang, W. Zheng, H. Wang, RapidMic: Rapid computation of the maximal information coefficient. *Evol. Bioinforma*. **10**, 11–16 (2013).
- 12. M. Leonard, S. Graham, D. Bonacum, The human factor: The critical importance of effective teamwork and communication in providing safe care. *Qual. Saf. Heal. Care.* **13**, 361–362 (2004).
- 13. R. Suzuki, H. Shimodaira, pvclust: An R package for hierarchical clustering with p-values. *Bioinformatics.* **22**, 1–7 (2013).

- 14. K. R. Clarke, Non-parametric multivariate analyses of changes in community structure. *Aust. J. Ecol.* **18**, 117–143 (1993).
- 15. D. I. Warton, S. T. Wright, Y. Wang, Distance-based multivariate analyses confound location and dispersion effects. *Methods Ecol. Evol.* **3**, 89–101 (2012).
- 16. T. Lumley, P. Diehr, S. Emerson, L. Chen, The importance of the normality assumption in large public health data sets. *Annu. Rev. Public Health* (2002), doi:10.1146/annurev.publhealth.23.100901.140546.
- 17. A. Chao, L. Jost, Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. *Ecology*. **93**, 2533–2547 (2012).
- 18. A. Chao *et al.*, Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. *Ecol. Monogr.* **84**, 45–67 (2014).
- 19. H. Tuomisto, A consistent terminology for quantifying species diversity? Yes, it does exist. *Oecologia*. **164**, 853–860 (2010).
- 20. C.-H. Chiu, A. Chao, Estimating and comparing microbial diversity in the presence of sequencing errors. *PeerJ.* **4**, e1634 (2016).
- 21. D. S. Jones, I. Schaperdoth, J. L. Macalady, Metagenomic evidence for sulfide oxidation in extremely acidic cave biofilms. *Geomicrobiol. J.* **31**, 194–204 (2014).
- 22. D. S. Jones *et al.*, Community genomic analysis of an extremely acidophilic sulfuroxidizing biofilm. *ISME J.* **6** (2012), pp. 158–170.
- 23. P. J. Turnbaugh *et al.*, A core gut microbiome in obese and lean twins. *Nature*. **457**, 480–484 (2009).
- 24. K. Kurokawa *et al.*, Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. *DNA Res.* **14**, 169–181 (2007).
- 25. T. Yatsunenko *et al.*, Human gut microbiome viewed across age and geography. *Nature*. **486** (2012), pp. 222–227.
- 26. J. Lloyd-Price *et al.*, Strains, functions and dynamics in the expanded Human Microbiome Project. *Nature*. **550**, 61–66 (2017).
- 27. K. S. Swanson *et al.*, Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. *ISME J.* **5**, 639–649 (2011).

- 28. B. M. Satinsky *et al.*, Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. *Microbiome*. **3**, 39–39 (2015).
- 29. R. Ghai *et al.*, Metagenomics of the water column in the pristine upper course of the Amazon river. *PLoS One*. **6**, e23785 (2011).
- 30. S. Oh *et al.*, Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. *Appl. Environ. Microbiol.* **77**, 6000–6011 (2011).
- 31. C. Simon, A. Wiezer, A. W. Strittmatter, R. Daniel, Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. *Appl. Environ. Microbiol.* **75**, 7519–7526 (2009).
- 32. P. Menzel *et al.*, Comparative metagenomics of eight geographically remote terrestrial hot springs. *Microb. Ecol.* **70**, 411–424 (2015).
- 33. C. Lüke, D. R. Speth, M. A. R. Kox, L. Villanueva, M. S. M. Jetten, Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. *PeerJ.* **4**, e1924 (2016).
- 34. F. J. Stewart, O. Ulloa, E. F. Delong, Microbial metatranscriptomics in a permanent marine oxygen minimum zone. *Environ. Microbiol.* **14**, 23–40 (2012).
- 35. J. F. Biddle, S. Fitz-Gibbon, S. C. Schuster, J. E. Brenchley, C. H. House, Metagenomic signatures of the Peru margin subseafloor biosphere show a genetically distinct environment. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 10583–10588 (2008).
- 36. J. F. Biddle, J. R. White, A. P. Teske, C. H. House, Metagenomics of the subsurface Brazos-Trinity Basin (IODP site 1320): comparison with other sediment and pyrosequenced metagenomes. *ISME J.* **5**, 1038–1047 (2011).
- 37. A. Quaiser, Y. Zivanovic, D. Moreira, P. López-García, Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. *ISME J.* **5**, 285–304 (2011).
- 38. O. E. Håvelsrud *et al.*, Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea. *BMC Microbiol.* **12**, 203 (2012).
- 39. O. Håvelsrud, T. H. Haverkamp, T. Kristensen, K. S. Jakobsen, A. Rike, A metagenomic study of methanotrophic microorganisms in coal oil point seep sediments. *BMC Microbiol.* **11**, 221 (2011).

- 40. I. P. G. Marshall, S. M. Karst, P. H. Nielsen, B. B. Jørgensen, Metagenomes from deep Baltic Sea sediments reveal how past and present environmental conditions determine microbial community composition. *Mar. Genomics* (2017), , doi:10.1016/j.margen.2017.08.004.
- 41. W. Zhang *et al.*, Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool. *Environ. Microbiol.* **17**, 4089–4104 (2015).
- 42. R. Stokke, I. Roalkvam, A. Lanzen, H. Haflidason, I. H. Steen, Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. *Environ. Microbiol.* **14**, 1333–1346 (2012).
- 43. F. Smedile *et al.*, Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, Matapan-Vavilov Deep. *Environ. Microbiol.* **15**, 167–182 (2013).
- 44. E. A. Eloe *et al.*, Going deeper: Metagenome of a hadopelagic microbial community. *PLoS One*. **6**, e20388 (2011).
- 45. K. T. Konstantinidis, J. Braff, D. M. Karl, E. F. DeLong, Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific Subtropical Gyre. *Appl. Environ. Microbiol.* **75**, 5345–5355 (2009).
- 46. S. Sunagawa *et al.*, Structure and function of the global ocean microbiome. *Science (80-.)* **348**, 1261359–1261359 (2015).
- 47. K. Anantharaman, J. A. Breier, G. J. Dick, Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. *ISME J.* **10**, 225–239 (2015).
- 48. K. Tang, K. Liu, N. Jiao, Y. Zhang, C. T. A. Chen, Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system. *PLoS One*. **8**, 1–11 (2013).
- 49. T. Urich *et al.*, Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics. *Environ. Microbiol.* **16**, 2699–2710 (2014).
- 50. F. D. Andreote *et al.*, The microbiome of Brazilian mangrove sediments as revealed by metagenomics. *PLoS One*. **7**, e38600 (2012).
- 51. H. Alzubaidy *et al.*, Rhizosphere microbiome metagenomics of gray mangroves (*Avicennia marina*) in the Red Sea. *Gene.* **576**, 626–636 (2016).

- 52. N. Fierer *et al.*, Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. *Proc. Natl. Acad. Sci.* **109**, 21390–21395 (2012).
- 53. P. T. Le *et al.*, Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. *Genome Biol. Evol.* **8**, 2737–2747 (2016).
- 54. F. J. Stewart, A. K. Sharma, J. A. Bryant, J. M. Eppley, E. F. DeLong, Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities. *Genome Biol.* **12**, R26 (2011).
- 55. P. Kanokratana *et al.*, Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. *Microb. Ecol.* **61**, 518–528 (2011).
- 56. T. O. Delmont *et al.*, Structure, fluctuation and magnitude of a natural grassland soil metagenome. *ISME J.* **6**, 1677–1687 (2012).
- 57. Y. Pan *et al.*, Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. *FEMS Microbiol. Ecol.* **90**, 195–205 (2014).
- 58. D. Bulgarelli *et al.*, Structure and function of the bacterial root microbiota in wild and domesticated barley. *Cell Host Microbe*. **17**, 392–403 (2015).
- 59. R. G. Taketani, V. N. Kavamura, R. Mendes, I. S. Melo, Functional congruence of rhizosphere microbial communities associated to leguminous tree from Brazilian semiarid region. *Environ. Microbiol. Rep.* **7**, 95–101 (2015).
- 60. A. M. Plominsky *et al.*, Metagenome sequencing of the microbial community of a solar saltern crystallizer pond at Cáhuil lagoon, Chile. *Genome Announc.* **2**, 1–2 (2014).
- 61. A. S. Pandit *et al.*, A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. *Extremophiles*. **19**, 973–987 (2015).
- 62. R. Ghai *et al.*, New abundant microbial groups in aquatic hypersaline environments. *Sci. Rep.* **1**, 135 (2011).
- 63. K. Rossmassler, T. E. Hanson, B. J. Campbell, Diverse sulfur metabolisms from two subterranean sulfidic spring systems. *FEMS Microbiol. Lett.* **363** (2016), doi:10.1093/femsle/fnw162.
- 64. C. Magnabosco *et al.*, A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. *ISME J.* **10**, 730–741 (2016).

## CHAPTER 3. PROTEIN CODING POTENTIAL OF NUCLEOTIDE SEQUENCES BASED ON KMERS

#### **M**ANUSCRIPT TEXT

#### **ABSTRACT**

Transcription of unexpected genomic segments is a generalised phenomenon that has been reported over the past few years. Recent studies have also revealed that part of these transcripts, previously declared as non-coding RNA, can actually be translated. These genetic elements are normally neglected by standard genome annotations. Whereas, current bioinformatic techniques for detecting these elements typically define a protein-coding potential based on evolutionary sequence conservation, or on the assumption that RNA sequences can be exclusively divided into protein coding and non-protein coding classes. Here, we describe a protein-coding measure based solely on the occurrence of in-frame Kmers more frequently found in protein-coding gene sequence databases. First, we evaluate different K values, finding best results with Kmer sizes from 9 to 12. Then, we use 9-mers to compare predicted high protein-coding potential regions with genes from some annotated genomes. Our results not only reproduce those from sophisticated gene-finders, but also reveal additional potential protein coding segments, which in many cases bear high homology with sequences from popular protein sequence databases. The simplicity of this method should imply a broad applicability, and thus it is expected that it can be used to explore and improve the understanding of complex genomic contexts.

#### Introduction

Historically, it has been assumed that nucleotide sequences can be separated into two classes: protein coding and non-protein coding sequences (hereinafter, coding and noncoding sequences). This assumption comes in part from the fact that protein and RNA folding are two complex and very different processes, thus their associated sequences should somehow encode these differences. Early attempts to detect coding segments within genomic sequences include analyses for the discrimination of introns from exons in eukaryotic sequences (1). Subsequent statistical analyses of amino acid sequences, and coding and noncoding nucleotide sequences showed that, in general, it is not possible to recognise amino acid sequences in proper proteins from randomly generated amino acid sequences; or coding from noncoding nucleotide sequences (2–4). One of the reasons for this may be that some protein-coding genes can simultaneously encode regulatory genes (e.g. riboswitches), or even alternative protein-coding genes in the antisense strand (5–8). However, proteomic and sequence homology research have allowed associating a protein-coding characteristic to many genes in previous years; whereas a lack of associated protein information, or RNA secondary structure validation has

been used to populate databases of noncoding genes. However, recent techniques, such as ribosome profiling, have revealed that translation is much more pervasive than previously thought, and that many sequences classified as noncoding can actually be translated (9,10). Thus, according to common practice, a single nucleotide sequence can be coding and noncoding at the same time, blurring the line between these supposed different classes of sequences (10,11). On the other hand, the increasing evidence that many transcripts do not correspond to annotated genes indicates that transcription is also more widespread in the genomes than anticipated (10-13). To elucidate the function of this so-called transcribed 'dark matter' (14) a number of methods have been designed to measure a protein-coding potential for transcripts, as a first step in the annotation of these sequences. These methods include alignment-based techniques that depend on the availability of conserved sequences in representative genomes (15-17). Other methods involve models that impose to coding RNA sequences gene structure constraints, some of which are lineage-specific (18). Most of these recent developments are implemented with machine learning algorithms to discriminate between coding and noncoding classes of sequences (16,19,20). These algorithms demand training datasets strictly classified for the learning process, which can be difficult to establish in the aforedescribed context. All these implementation designs can restrict the scope in which these tools can be used. For example, in a recent study of  $\mu$ -proteins (short proteins with less than 80 amino acids) in cyanobacteria, the authors had to use comparative genomic and transcriptomic methods to predict some of these elements, which was only possible by the availability of closely related genomic sequences in those particular lineages (21). Moreover, current analyses of metagenomic and metatranscriptomic data are typically carried out only by normal sequence homology searches in protein and RNA databases; leaving a high number of sequences out of posterior analyses. Metagenomic and metatranscriptomic data from microbial populations are currently abundant in databases, and it is expected to further expand as part of several high impact initiatives such as the Human Microbiome (22) and the Earth Microbiome projects (23).

Combined, this suggests that a measure of protein-coding potential applicable to a wide range of nucleotide sequences has to be: a) a numeric value that somehow represents a probability of protein-coding, avoiding exclusive categorisation of sequences into coding and noncoding; b) simple, in order to avoid lineage-specific constraints; and c) based on features present only in reliable protein-coding gene sequences, since the noncoding characteristic have shown to be rather volatile in many cases. In previous works, biases in the hexamers (6-mers, six contiguous nucleotides) usage have been regarded as one of the most discriminatory features for classifying coding and noncoding sequences (1,20,24). Here, we describe a simple method for measuring the protein-coding potential of nucleotide sequences based solely on the occurrence of in-frame Kmers more frequently found in protein-coding gene sequence databases. To this end we first evaluated different Kmers (from 5- to 13-mers), and found significant evidence that

best results are obtained with 9- to 12-mers. Accordingly, we used 9-mers (or nonamers) for simplicity in subsequent analyses. We compared predicted high protein-coding potential regions with genes from some annotated genomes. Our results in most cases coincided with those from current state-of-the-art gene-finders, and also revealed some protein-coding segments missed by these tools, but still possessing high homology with sequences from protein sequence databases.

#### **M**ATERIALS AND METHODS

Protein coding-potential measure based on in-frame Kmers. Given a database of proteincoding sequences, it is possible to compute the frequencies for each kmer occurring as in-frame in those sequences (Section 1, Supplementary Material). Then, the logarithm of these frequencies is considered in order to reduce the effect of possible uneven representation of some type of protein sequences in the database (Fig. 1). The protein-coding database used in this study was constructed from all CDS (Coding Data Sequence) in FASTA files downloaded from the NCBI FTP site of bacterial genomes (more details in Supplementary Material). To detect high protein-coding potential regions within genomic sequences, we defined an algorithm that considers the differences between the log frequency of each Kmer (from Log Count Tables, LCT<sub>k</sub> tables, Fig. 1) and an arbitrary zero potential. A simple value for this parameter can be the average of all non-zero frequencies (Table S1). The sum of these differences is then stored into a buffer potential variable with a maximum value (buffer size), recording the position of the Kmer that started a positive sum and the number of Kmers that keep this sum positive. When this sum reaches zero (because of negative differences coming from Kmer frequencies below the zero potential) then the high protein-coding potential region ends, and the region is only considered if the number of Kmers exceeds a predefined minimum number of Kmers. A simple sketch of this algorithm is presented below:

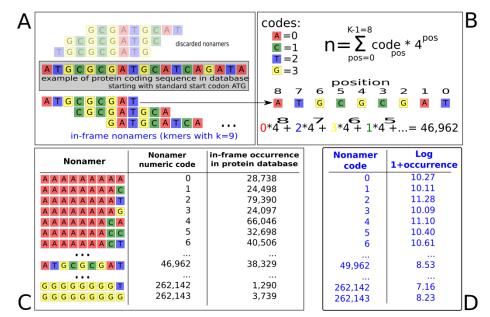



Figure. 1. Construction of a table of log frequencies of in-frame nonamers for use in coding-potential estimation. A) Given а database of protein-coding gene sequences (CDS or coding data sequence), the process analysing by sequence in terms of its in-frame compounding nonamers. The first nonamer is the subsequence starting at and ending at position 9. The second nonamer starts at position 4, ending at position 12, and so

on. The rest of out-frame nonamers are simply discarded. B) Each nonamer is assigned a number making use of the well-known formula for numeric base conversion. In this case, each nucleotide is given a number (numeric code from 0 to 3), and we consider nonamers as numbers in base 4, converting them to classical decimal base and using this number as a perfect hash number in a table. C) Occurrences of each nonamer are counted over the entire CDS database and stored in a table, indexed by the previously described nonamer numeric code (hash number). D) The number of occurrences for each nonamer (described by hash number from 0 to 4°=262,143) is then applied the conversion 1 + Log to reduce undesirable effects of uneven sequencing efforts on certain taxa (and consequently in some recurrent proteins encoded by their genomes). A final table (Log Count Table, LCT<sub>k</sub>) associating a numeric value (log count of occurrences, a number between 1 and ~12 in the figure) to each nonamer (represented by the hash number described above) is then ready to use to compute coding-potential to input transcriptomic or genomic sequences.

All genomic analyses presented here used a buffer size of 10. Computer programs written in C were developed to carry out these procedures (Section 2, Supplementary Material). Free access to this software and online analyses can be found at <a href="http://bioinf.udec.cl/kodpot">http://bioinf.udec.cl/kodpot</a>.

Evaluation of different sets of Kmers for measuring the protein-coding potential. Biases in hexamer (6-mer) usage in nucleotide sequences have been extensively used as a discriminant feature between coding and noncoding sequences (1,20,24). Since no explicit justification for this particular Kmer size choice has been reported, we first evaluated different Kmer sizes (from k=5 to 13) as features for calculating a protein-coding potential measure. To compare the different sets of Kmer frequencies, each of these sets were used to predict the frame in which the BLASTX algorithm found the best homology in short metagenomic sequence reads. The datasets used in this study were 164 metagenomes from different biomes (Table S2), ensuring a high diversity both functionally and taxonomically, which allows an unbiased Kmer evaluation. Given LCT<sub>k</sub> tables for k=1...13, constructed as in Fig.1 for k=9 the following formula:

$$A vgCP_{i} = \frac{\left(\sum_{j=1}^{N_{i}} kmer_{-}lc_{j}\right)_{i}}{N_{i}}, i = 1,..., 6$$

was used to compute a coding potential for each of the six possible frames for every sequence read.  $AvgCP_i$  represents the respective average coding-potentials for the six frames (i=1..6);  $kmer\_kc_j$  are the log counts (from LCT<sub>k</sub> tables) for each of the  $N_i$  in-frame  $kmers_j$  ( $j=1..N_i$ ) observed in each frame of each metagenomic sequence read. The frame i, in which  $AvgCP_i$  is maximal was considered the frame prediction for protein-coding potential. This frame was then compared to the frame in which Diamond/BLASTX (25) found the best hit in the Pfam database (26), with a cut-off bitscore of 50.

If we consider an uninformed or random predictor for the frame in which a nucleotide sequence encodes a protein, we have to expect a success ratio of 1/7 (six possible frames plus one option for noncoding sequences, i.e. ~14% of success). Our prediction of protein-coding frame of metagenomic sequence reads were above 80% of success when using Kmers from 6-to 12-mers, with best results in the range of 9- to 12-mers (Fig. S1).

Plotting signals of protein coding-potential of nucleotide sequences. To plot protein-coding signals for each frame in genomic sequences, the same procedure described above was applied to moving averages of regions along the sequences. The window length considered was varied depending on the length of the sequence to analyse. For each of those moving windows, an average was computed using the above formula, and plotted in different colours for each of the six possible frames. A zero-potential (described above) line was drawn for each strand in all of the plots.

#### RESULTS

Given the proposed method for calculating a protein-coding potential, which requires a choice in the Kmers size to use, we found significant differences between K = 5 to 13. The best results were achieved with K = 9 to 12 (Fig. S1). Thus, for simplicity, we used 9-mers (K=9, nonamers) in all subsequent analyses to evaluate the applicability of this method for analysing generic genomic data. In particular, we used nonamer log counts to estimate variations in the codingpotential of genomic regions, and graphically see this as signals for each genomic frame. To this end, moving averages of nonamers log counts were computed for each frame. Figure 2 shows the genomic region encoding the ammonia monooxygenase enzyme (amoA, amoB and amoC subunit genes) of Nitrosopumilus maritimus SCM1. It can be appreciated that whenever the genome encodes a protein, only one frame shows values consistently above a zero potential (horizontal lines within the signals), while the others display, in general, a noise-like behaviour. As the genomic region including multiple genes was taken as a unit, the frames in which the different genes are encoded, changes from one to another. For example, the genes with locus tag Nmar 1498 and Nmar 1499 are both encoded in the frame displayed as blue, while Nmar\_1503 (amoB) is encoded in the red frame, relative to the start coordinate of this region (1,365,300) (Fig. 2A). A similar situation occurs in the reverse strand, which encodes amoA and

amoC. It is also worth noting that most intergenic regions display a noise-like behaviour in all the frames (Fig. 2A). Additionally, this analysis revealed other small protein-coding segments in regions commonly regarded as noncoding. This can be visualised in Fig. 2B, within the large ribosomal subunit 23S gene (between coordinates 893,640 and 894,042 in the reverse strand). To check if the high protein-coding potential found for this region can actually correspond to a protein sequence homology (or simply be an artefact of the method), we translated this region and used BLASTP against the NCBI-nr database and detected an archaeal rRNA intron-encoded endonuclease among the highest scored hits (bitscore=52, e-value=2x10<sup>-5</sup>). The existence of this type of endonuclease within rRNA sequences has been previously reported (27), but it was missed in the official annotation of this genome (28). Note how the rest of this sequence displays noise-like signals in the coding-potential for all six frames (Fig. 2B), indicating that this measure is controlled in undesirable false positive assessments of high coding-potential regions.

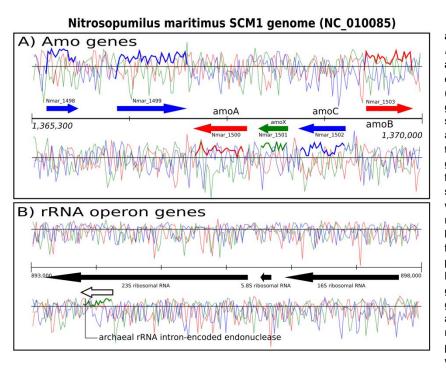



Figure. 2. Nonamer-based coding analysis of two genomic regions of Nitrosopumilus maritimus SCM1 archaeal genome. A) Genomic region encoding ammonia oxidation genes (amoACB) and other neighbouring genes. In the centre of the diagram is shown the annotated genes and both above and below this annotation are three frame signals (in red, blue and green), corresponding to frames in the forward and the complement reverse strand, respectively. The lines around which the frame signals oscillate represent a zero-potential value. Note how the protein-coding potential for a frame is consistently above this zeropotential wherever a gene is encoded. B) Genomic region associated to rRNA genes. Unlike the above case, these genes are not protein-coding, thus their associated frames (both forward and reverse) do not get above zeropotential, except for one small region within the 23S gene. This protein-

coding region was missed by gene-finders in the official genome release at RefSeq (NC\_010085). However, a BLASTX of the corresponding sequence reveals a significant hit to an archaeal rRNA intron-encoded endonuclease.

To show the behaviour of this coding-potential method in genomic regions whose genes have not been used in the computation of the log counts of nonamers (LCT $_k$  tables), we analysed a recent draft genome of the cyanobacterium *Hassalia byssoidea* VB51217 (29). The result of this analysis for a region of this sequence is shown in Figure 3. As can be noted, all annotated CDSs within this region were predicted to have a high coding potential. However, a number of additional regions were predicted with high coding-potential as well, most of them with confirmed significant protein homology in current databases (e.g. filamentous hemagglutinin

outer membrane protein genes, Fig. 3). A closer inspection of the official annotation (carried out by the NCBI Prokaryotic Genome Annotation Pipeline) showed that these regions were indeed annotated as *pseudo-genes* without CDS, indicating that the gene-finder software GeneMarkS (30) was unable to find an expected gene signal in these regions. However, a direct sequence alignment search actually found a protein sequence homology, as confirmed by our high coding-potential assessment and the subsequent manual search performed on them to verify the prediction.

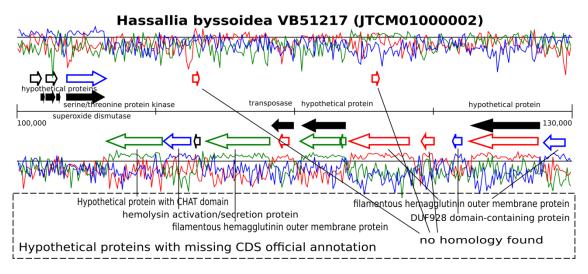



Figure. 3. Nonamer-based coding potential analysis of a region from the draft genome of the cyanobacterium *Hassallia byssoidea* VB51217. Filled arrows represent genes in the annotation carried out by the NCBI Prokaryotic Genome Annotation Pipeline. Coloured empty arrows, on the other hand, represent regions in which the protein-coding potential by nonamers gets consistently higher than zero-potential. All annotated genes were predicted by this potential, plus a number of other regions, called pseudo-genes by the above mentioned pipeline because the underlying gene-finder software was unable to detect them. All these regions have significant homologies in protein databases, except for a few small regions with no known homology.

Taking into account that the log counts of Kmers (nonamers in particular) were computed from a database of bacterial genes (see above), we examined the performance of our method on genomic eukaryotic sequences, which represent a different and more challenging test, as normal sequence repetitions and the splitting of genes into spatially separated exons add a layer of complexity to the detection of related protein-coding regions. Results of the analysis we carried out of the protein-coding potential of region [31,873,100 - 31,925,300] from chromosome 21 of the human genome sequence GRCh38 are shown in Figure 4 as an example. The official annotation of this region currently includes only two exons of the protein ENSG00000142149, and has been previously analysed to demonstrate the good prediction of a previous protein-coding potential tool (31). In our analysis these two exons are detected as high-potential regions with simultaneous signals in multiple frames (displayed in the upper left and right corners in Figure 4). These parallel high coding potential signals may represent different stages in the evolution of overlapping genes (32,33). In addition, a number of other regions were also predicted with high protein-coding potential, some of them with noteworthy homology to protein sequences in Swiss-Prot (34) and Pfam (26) databases. Three of them,

encoded in the reverse strand, scored highly to the same protein sequence FLJ38264 in Swiss-Prot database (as determined by the best BLAST hit with e-value  $< 10^{-5}$  and bitscore > 50), displayed in the lower left corner in Fig. 4). Moreover, one of these regions shared the same Pfam domain (activator of Hsp90 ATPase, PF08327) with another region located ca. 30,000 bp upstream in the same strand. More extensive analysis of these sequences is beyond the scope of this article, but although only 4 out of 16 detected regions presented confirmed protein homology in current databases, the result of this simple analysis may have a significance worth of more in-depth analyses. For example, eukaryotic protein-coding sequences may be used to compute the LCT<sub>k</sub> tables (Material and Methods) to see if the same or new regions with high coding potential are detected.

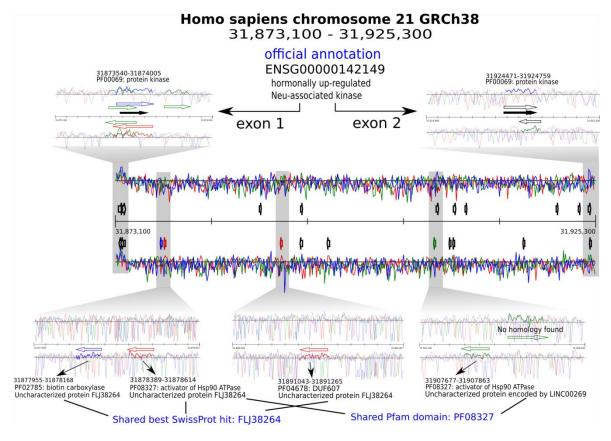



Figure. 4. Nonamer-based coding potential analysis of a section of chromosome 21 from the human genome. The sequence region GRCh38 encodes two separated exons from protein ENSG00000142149 and has previously been used to compare the performance of translation initiation site predictors (31). Here, we show that the coding-potential measure can also detect the annotated exons (upper left and right). A number of other protein-coding regions were also predicted, apparently with a coherent context of homologies (lower). All of these regions are missed in the official annotation, despite their homology significance in protein databases and the apparent relation among them. Small arrows in black represent predicted regions with coding-potential without homology in current protein databases. The detection of high protein-coding regions in parallel regions may represent an early stage in the formation of overlapping genes (33).

#### **DISCUSSION**

An effective estimation of the protein-coding potential of nucleotide sequences can be applied to several challenging and important bioinformatic tasks, such as genomic gene prediction,

annotation of high numbers of unexpected transcribed 'dark matter', and protein homology search of short metagenomic and metatranscriptomic sequences. A robust gene calling assessment process should avoid two undesirable extreme behaviours: calling every genomic region a gene and missing important genes that may hinder our understanding of the genomic complexity developed by biological systems during evolution. Along this line of thought, it has been previously demonstrated that in many cases simpler models normally achieve better results for predicting genes in general data (31). Current coding-potential prediction developments and ab-initio gene finders rely on a series of assumptions for their models, typically considering multiple features in the sequences (e.g. specific start and stop codons, ORF size, Fickett score and hexamer score). Here, we focused on determining the best Kmer option for estimating a protein-coding potential, and establishing whether this set of Kmers alone is able to provide an efficient protein-coding potential measure. Our results show that a measure of protein-coding potential based on log frequencies of in-frame Kmers from a protein database can, in general, predict the protein coding frame of metagenomic sequences, and that among these Kmers sets, Kmers from 9- to 11-mers are the best predictors of this characteristic (Figure S1). Based on this result, we further explored the use of this measure to predict protein-coding regions within genomic regions. The result of these analyses shows a coincidence with the CDS annotated by state-of-the-art annotation pipelines, plus a number of other predictions, like pseudo-genes or genes encoding  $\mu$ -proteins that current gene-finders are unable to detect. These elements are normally either missed or annotated only by direct searches against protein databases, a process whose success depends on the existence of close homologues (Fig. 2 and 3).

The use of hexamers for discriminating protein-coding and noncoding sequences is a technique that has been used for decades (1,20,24). In order to assign numerical values to these sequence features, these methods rely on the existence of pre-classified protein-coding and noncoding sequences. Historically, the term noncoding has been used to refer to sequences with a biological functionality as RNA (e.g. regulation), without being first translated. However, RNA catalytic functionality does not necessarily exclude subsequent translation (11). It has been reported that the manually curated Swiss-Prot database of proteins would include up to 10% of erroneously translated noncoding RNA (18). Although no database can be totally free of errors, this claim was based on the application of noncoding classifier programs implementing a number of debatable constraints (e.g. that protein-coding genes cannot overlap), or trained with some arbitrarily pre-classified noncoding sequences. On the other hand, databases of sequences commonly regarded as noncoding, apparently include even higher percentages of protein-coding sequences. For example, the high-confident subset of LNCipedia (35), a database of human long noncoding RNA, includes more than 30% of sequences with a BLASTX result (e-value < 10<sup>-5</sup>, bitscore > 50) against Pfam or Uniref90 protein databases (Tables S3 and S4). This view is apparently more congruent with recent experimental studies that have

demonstrated that sequences previously regarded as noncoding can actually encode proteins, or at least be translated as such (9,10). Thus, it is seemingly not possible to establish strictly separated datasets of coding and noncoding sequences, required for training of binary classifier models used in many modern methods for estimating protein-coding potential. This problem, together with the aforementioned use of complex models with many assumptions constitute the ingredients for the so-called overfitting problem in machine learning techniques, which may prevent the applicability of these methods to more general genomic contexts. For example, it has been reported that current gene-finding methods have low success in some underrepresented protist genomes, mainly because of the presence of a high number of overlapping genes (36). Here, we first showed that nonamers are better than hexamers recognising general protein-coding nucleotide sequences; when a value for these features is computed as log counts of their in-frame occurrences in a dataset comprised solely of proteincoding sequences. In this way, only in-frame Kmers count for protein-coding features, keeping low counts for recurrent off-frame Kmers assumed to be randomly distributed in sequences devoid of translation activity. Our results suggest that a protein-coding potential solely based on nonamers can be useful in the prediction of protein-coding genes both in short metagenomic/metatranscriptomic sequences and in general genomic data. In the former case, a prior coding-potential analysis of input sequences can allow DNA-to-protein aligner programs to reduce the number of searches by predicting the frame (or at least reducing their number) in which a sequence is most likely encoding a protein. In the latter case, the parallel determination of a protein-coding potential for each genomic frame avoiding the use of lineage-specific constraints, can provide a more complete interpretation of general and complex genomic sequences.

#### REFERENCES

- 1. Claverie JM, Bougueleret L. Heuristic informational analysis of sequences. Nucleic Acids Res. 1986;14(1):179–96.
- 2. Weiss O, Jiménez-Montaño M a, Herzel H. Information content of protein sequences. J Theor Biol. 2000;206(3):379–86.
- 3. Mantegna RN, Buldyrev S V., Goldberger AL, Havlin S, Peng CK, Simons M, et al. Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics. Phys Rev E. 1995;52(3):2939–50.
- 4. Lavelle DT, Pearson WR. Globally, unrelated protein sequences appear random. Bioinformatics [Internet]. 2010 Feb 1 [cited 2014 Dec 25];26(3):310–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2852211&tool=pmcentrez&render type=abstract

- 5. Fahey ME, Moore TF, Higgins DG. Overlapping antisense transcription in the human genome. Comp Funct Genomics. 2002;3(3):244–53.
- 6. Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM, Casari G. In search of antisense. Trends Biochem Sci. 2004;29(2):88–94.
- 7. Georg J, Hess WR. Natural antisense transcripts in Bacteria. Regul RNAs [Internet]. 2012;95–108. Available from: http://dx.doi.org/10.1007/978-3-7091-0218-3\_5
- 8. Serganov A, Patel DJ. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet. 2007;8(10):776–90.
- 9. Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJS, Jackson SE, et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 2014;1365–79.
- 10. Pauli A, Valen E, Schier AF. Identifying (non-)coding RNAs and small peptides: Challenges and opportunities. BioEssays [Internet]. 2015;37(1):103–12. Available from: http://doi.wiley.com/10.1002/bies.201400103
- 11. Dinger ME, Pang KC, Mercer TR, Mattick JS. Differentiating protein-coding and noncoding RNA: Challenges and ambiguities. PLoS Comput Biol. 2008;4(11):e1000176.
- 12. Kapranov P, St Laurent G, Raz T, Ozsolak F, Reynolds CP, Sorensen PHB, et al. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is "dark matter" unannotated RNA. BMC Biol. 2010;8:149.
- 13. Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh J a, et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol [Internet]. 2011;30(1):99–104. Available from: http://dx.doi.org/10.1038/nbt.2024
- 14. Ponting CP, Grant Belgard T. Transcribed dark matter: Meaning or myth? Hum Mol Genet. 2010;19(R2):162–8.
- 15. Washietl S, Findeiss S, Müller SA, Kalkhof S, von Bergen M, Hofacker IL, et al. RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA [Internet]. 2011;17(4):578–94. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3062170&tool=pmcentrez&render type=abstract
- 16. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(SUPPL.2):345–9.

- 17. Lin MF, Jungreis I, Kellis M. PhyloCSF: A comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics. 2011;27(13):i275–82.
- 18. Frith MC, Bailey TL, Kasukawa T, Mignone F, Kummerfeld SK, Madera M, et al. Discrimination of non-protein-coding transcripts from protein-coding mRNA. RNA Biol. 2006;3(1):40–8.
- 19. Liu J, Gough J, Rost B. Distinguishing protein-coding from non-coding RNAs through support vector machines. PLoS Genet. 2006;2(4):529–36.
- 20. Wang L, Park HJ, Dasari S, Wang S, Kocher J-PP, Li W. CPAT: Coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41(6):1–7.
- 21. Baumgartner D, Kopf M, Klähn S, Steglich C, Hess WR. Small proteins in cyanobacteria provide a paradigm for the functional analysis of the bacterial micro-proteome. BMC Microbiol [Internet]. 2016;16(1):285. Available from: http://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-016-0896-z%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/27894276
- 22. Integrative T. The integrative Human Microbiome Project: Dynamic analysis of Microbiome-Host omics profiles during periods of human health and disease. Cell Host Microbe [Internet]. 2014;16(3):276–89. Available from: http://dx.doi.org/10.1016/j.chom.2014.08.014
- 23. Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Brown CT, et al. Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci. 2010;3(3):243.
- 24. Fickett JW, Tung CS. Assessment of protein coding measures. Nucleic Acids Res. 1992;20(24):6441–50.
- 25. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods [Internet]. 2014 Jan;12(1):59–60. Available from: http://dx.doi.org/10.1038/nmeth.3176
- 26. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: The protein families database. Vol. 42, Nucleic Acids Res. 2014. p. D222–30.
- 27. Lambowitz AM, Belfort M. Introns as mobile genetic elements. Annu Rev Biochem. 1993;62:587–622.
- 28. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, et al. *Nitrosopumilus maritimus* genome reveals unique mechanisms for nitrification and autotrophy in globally

distributed marine crenarchaea. Proc Natl Acad Sci USA [Internet]. 2010;107(19):8818–23. Available from: http://www.pnas.org/content/107/19/8818.long

- 29. Singh D, Chandrababunaidu M, Panda A, Sen D, Bhattacharyya S, Adhikary P. Draft genome sequence of cyanobacterium *Hassallia byssoidea* strain VB512170, isolated from monuments in India. J Bacteriol. 2015;3(2):2014–5.
- 30. Borodovsky M, Lomsadze A. Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite. Curr Protoc Microbiol. 2014;(SUPPL.32).
- 31. Saeys Y, Abeel T, Degroeve S, Van de Peer Y. Translation initiation site prediction on a genomic scale: Beauty in simplicity. Bioinformatics. 2007;23(13):418–23.
- 32. Veeramachaneni V. Mammalian overlapping genes: The comparative perspective. Genome Res [Internet]. 2004;14(2):280–6. Available from: http://www.genome.org/cgi/doi/10.1101/gr.1590904
- 33. Fonseca MM, Harris DJ, Posada D. Origin and length distribution of unidirectional prokaryotic overlapping genes. G3 (Bethesda) [Internet]. 2014;4(1):19–27. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3887535&tool=pmcentrez&render type=abstract
- 34. Consortium TU. UniProt: a hub for protein information. Nucleic Acids Res [Internet]. 2014;43(D1):D204–12. Available from: http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gku989
- 35. Volders P-J, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesompele J, et al. An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res [Internet]. 2014;43(D1):D174–80. Available from: http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gku1060
- 36. Caron D a, Worden AZ, Countway PD, Demir E, Heidelberg KB. Protists are microbes too: a perspective. ISME J. 2009;3(1):4–12.

#### SUPPLEMENTARY INFORMATION APPENDIX (SI APPENDIX)

#### SECTION 1. IN-FRAME KMERS OF CODING GENES IN SEQUENCED BACTERIAL GENOMES

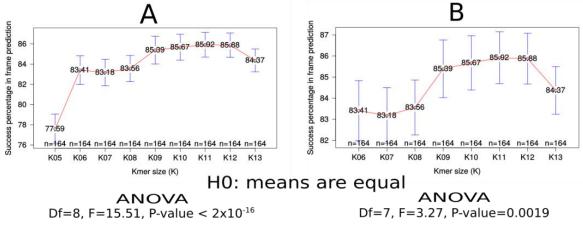
Here we consider a kmer as a subsequence of length k of a nucleotide sequence. An in-frame kmer is a kmer that starts in a position multiple of 3 from a protein-coding gene sequence. If, for example, we have the sequence AGCTGATAGCTTAGATAA, then it contains 4 nonamers (kmer with k=9) in the forward direction, namely AGCTGATAG, TGATAGCTT, TAGCTTAGA and CTTAGATAA. In-frame k-mers from coding gene sequences were retrieved and counted for calculating their occurrences in currently sequenced bacterial genomes (\* cds from genomic.fna.gz files retrieved from complete genomes ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly\_summary.txt\_as\_of\_January\_2017). As these data are expected to be biased by uneven sequencing efforts in different taxonomical groups, the logarithm of these frequencies values were used to reduce this effect. The results of the calculations described in Materials and Methods are presented in Table S1.

#### SECTION 2. C PROGRAM TO PROCESS IN-FRAME KMERS FROM GENE SEQUENCES

This program computes the log count values for kmers present in the sequences in the FASTA files within a subdirectory. This program can be compiled in any Unix system (e.g. Linux) with the command:

```
gcc -O3 -o output_program_name source_c_file.c
```

For easy access the source code of this program is displayed here and is also provided as a separate C file.


```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <dirent.h>
#include <unistd.h>
#include <sys/types.h>
#define MAXSEQNAMELEN
#define MAXSEQLEN
                         8192
#define MAXLINELEN
                          8192
       char name[MAXSEQNAMELEN];
        char seq[MAXSEQLEN];
int getNextSeqFromFastaFile( struct Seq *seq, FILE *f );
int ACTG2int( char *actg, int len );
int main( int argc, char *argv[] ) {
struct Seq seq;
FILE *f;
int K, maxidx, *kmers_arr, num, i, j, l, slen;
float avg, var, logsum, logsum2;
char *kmer, fpath[8192];
DIR *dir;
struct dirent *ent;
                 fprintf(stderr, "Usage: %s <K> <ffn dir>\n", argv[0]);
                 return 1;
```

```
}
         dir = opendir( argv[2] );
         if(!dir ) {
                   fprintf(stderr, "Error: can't open ffn files directory\n");
                   return 1;
         K = atoi(argv[1]);
         maxidx = pow( 4, K );
kmers_arr = (int *)malloc( (maxidx + 1) * sizeof(int) );
         if( !kmers_arr ) { fprintf(stderr, "malloc failed\n"); return 1; }
memset( kmers_arr, 0, sizeof(int) * maxidx );
         kmer = (char *)malloc( (K+1) * sizeof(char) );
if( !kmer ) { fprintf(stderr, "malloc failed\n"); return 1; }
while( (ent = readdir(dir)) != NOLL ) {
                   if( ent->d_type != DT_REG ) continue;
                   sprintf( fpath, "%s/%s", argv[2], ent->d_name );
f = fopen( fpath, "r" );
                   if( !f ) { fprintf(stderr, "fopen(%s) failed\n", fpath); continue; }
                   while( getNextSeqFromFastaFile( &seq, f ) ) {
                             slen = strlen( seq.seq );
                             for( i = 0; i < slen - K; i += 3 ) {
    for( j = 0, l = i; j < K; j++, l++ )</pre>
                                                 kmer[j] = seq.seq[1];
                                       kmer[j] = 0;
                                       num = ACTG2int( kmer, K);
                                       if( num >= 0 ) kmers arr[num] += 1;
                    fclose(f);
         printf("\n");
          sprintf( fpath, "cdskmerf %d.db", K );
          f = fopen( fpath, "w" );
         if( !f ) { printf("Can't open cdskmerf.db\n"); return 1; }
          logsum = logsum2 = 0;
         for( i = 0; i < maxidx; i++ ) {</pre>
                   float logkcount;
                   logkcount = log( 1 + kmers arr[i] );
                    fwrite( &logkcount, sizeof(float), 1, f );
                    logsum += logkcount;
                   logsum2 += logkcount * logkcount;
         fclose(f);
         avg = logsum/maxidx;
          var = logsum2/maxidx - avg * avg;
         printf("Average: %.2f\n", avg);
printf("Std dev: %.2f\n", sqrt(var));
          free( kmer );
         free ( kmers arr );
         return 0;
int ACTG2int( char *actg, int len ) {
          int POWERS4[] = {1,4,16,64,256,1024,4096,16384,65536,262144,1048576,4194304,16777216};
          int ret = 0, i = len - 1;
         char *ptr = actg;
         while( *ptr ) {
                    // A=0, C=1, T=2, G=3
                   switch( *ptr ) {
     case 'A': break;
                             case 'N': break;
                             case 'C': ret += POWERS4[i]; break;
                             case 'T': ret += 2 * POWERS4[i]; break;
                             case 'G': ret += 3 * POWERS4[i]; break;
                             default: return -1;
                    i--; ptr++;
         return ret;
int getNextSeqFromFastaFile( struct Seq *seq, FILE *f ) {
        char *ptr, buf[MAXLINELEN];
         int namei, seqi;
         long fpos;
        namei = seqi = 0;
```

```
seq->name[0] = seq->seq[0] = 0;
fpos = ftell( f );
while( fgets( buf, MAXLINELEN, f ) != NULL ) {
        ptr = buf;
        while( isspace(*ptr) ) ptr++;
        if( *ptr ==
                if( namei > 0 && seqi > 0 ) {
                        fseek( f, fpos, SEEK_SET );
                         return(1);
                ptr++; /* ignore > */
                for( ; *ptr && namei < MAXSEQNAMELEN ; ptr++ )</pre>
                         if( isprint( *ptr ) )
                                 seq->name[namei++] = *ptr;
                for( ; *ptr && seqi < MAXSEQLEN ; ptr++ )</pre>
                         if( isalnum( *ptr ) )
                                 seq->seq[seqi++] = *ptr;
        seq->name[namei] = 0;
        seq->seq[seqi] = 0;
        fpos = ftell( f );
if( namei > 0 && seqi > 0 )
        return(1);
return( 0 );
```

#### **FIGURES**

Averages of percentages of coincidence between predicted protein-coding frame and the frame in which BLASTX found homology to sequences in the Pfam database



**Figure. S1.** Averages of percentages of coincidence between predicted protein-coding frame and the frame in which BLASTX found homology to sequences in the Pfam database. The protein-coding potential was estimated for each of the six frames of every sequence from the metagenomes listed in Table S1. The plots show the percentage of coincidence of the frame prediction (highest potential among the six frames) with the best BLASTX hit, using Pfam as the reference protein database and a bitscore cut-off of 50. The best results were obtained when using K=11, i.e. undecamers, as features in the protein-coding sequences to estimate a protein-coding potential. The database used for estimating the Kmers (as described in Fig. 1) log frequencies was the set of protein-coding genes from sequenced bacterial genomes in the NCBI site. Plot A considers Kmers from K=5 to 13. The ANOVA test for the differences of means indicates that there is strong evidence (P-value < 2x10<sup>-16</sup>) to reject the null hypothesis. As K=5 is an outlier, we repeated the test excluding K=5, resulting in the analysis shown in part B of the figure. In this case the evidence is less strong (P-value=0.0019) but we can equally reject the null hypothesis at a confidence of 95%.

#### **TABLES**

| Maximum    |                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| number of  | Average Log                                                                                                 | Standard                                                                                                                                                                                                                                                                                              | Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Kmers      | count                                                                                                       | deviation                                                                                                                                                                                                                                                                                             | of variation                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1,024      | 14.25                                                                                                       | 1.73                                                                                                                                                                                                                                                                                                  | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4,096      | 12.50                                                                                                       | 2.33                                                                                                                                                                                                                                                                                                  | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16,384     | 11.05                                                                                                       | 2.38                                                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 65,536     | 9.59                                                                                                        | 2.42                                                                                                                                                                                                                                                                                                  | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 262,144    | 7.87                                                                                                        | 2.74                                                                                                                                                                                                                                                                                                  | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,048,576  | 6.51                                                                                                        | 2.53                                                                                                                                                                                                                                                                                                  | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4,194,304  | 5.18                                                                                                        | 2.23                                                                                                                                                                                                                                                                                                  | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16,777,216 | 3.64                                                                                                        | 2.18                                                                                                                                                                                                                                                                                                  | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 67,108,864 | 1.96                                                                                                        | 1.89                                                                                                                                                                                                                                                                                                  | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | number of<br>Kmers<br>1,024<br>4,096<br>16,384<br>65,536<br>262,144<br>1,048,576<br>4,194,304<br>16,777,216 | number of Kmers         Average Log count           1,024         14.25           4,096         12.50           16,384         11.05           65,536         9.59           262,144         7.87           1,048,576         6.51           4,194,304         5.18           16,777,216         3.64 | number of Kmers         Average Log count         Standard deviation           1,024         14.25         1.73           4,096         12.50         2.33           16,384         11.05         2.38           65,536         9.59         2.42           262,144         7.87         2.74           1,048,576         6.51         2.53           4,194,304         5.18         2.23           16,777,216         3.64         2.18 |

**Table S1.** Statistics of in-frame kmers (k=5..13) of the genes from the CDS database of sequenced genomes used in this study (Material and Methods).

Table S2

| Number of   |                |                                                                                                                                                              |
|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| metagenomes | Biome          | Publication or electronic resource                                                                                                                           |
| 1           | Acidic cave    | Metagenomic evidence for sulfide oxidation in extremely acidic cave biofilms (1)                                                                             |
| 1           | Canine gut     | MG-RAST id 4444703.3                                                                                                                                         |
| 1           | Chicken cecum  | MG-RAST id 4440283.3                                                                                                                                         |
| 1           | Cow rumen      | MG-RAST id 4441679.3                                                                                                                                         |
| 1           | Termite gut    | MG-RAST id 4442701.3                                                                                                                                         |
| 18          | Human gut      | A core gut microbiome in obese and lean twins (2)                                                                                                            |
| 1           | Acid salt lake | Insights from the metagenome of an acid salt lake: the role of biology in an extreme depositional environment (3)                                            |
| 8           | River          | Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011 (4)                                                                       |
| 1           | Lake           | Metagenomic Insights into the evolution, function, and complexity of the planktonic microbial community of lake Lanier, a temperate freshwater ecosystem (5) |
| 8           | Hot spring     | Comparative metagenomics of eight geographically remote terrestrial hot springs (6)                                                                          |
| 16          | Seawater       | CAMERA project CAM_P_000692                                                                                                                                  |
| 2           | Seawater       | Metagenomic analysis of nitrogen and methane cycling in the Arabian sea Oxygen Minimum Zone (OMZ) (7)                                                        |
| 8           | Seawater       | Microbial metatranscriptomics in a permanent marine oxygen minimum zone (8)                                                                                  |
| 4           | Subseafloor    | Metagenomic signatures of the Peru margin subseafloor biosphere show a genetically distinct environment (9)                                                  |

| 1  | Subseafloor                 | Metagenomics of the subsurface Brazos-Trinity basin (IODP site 1320): comparison with other sediment and pyrosequenced metagenomes (10)       |
|----|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Marine sediment             | Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara (11)                                            |
| 7  | Marine sediment             | Metagenomic and geochemical characterization of pockmarked<br>sediments overlaying the Troll petroleum reservoir in the North<br>Sea (12)     |
| 2  | Marine sediment             | A metagenomic study of methanotrophic microorganisms in coal oil point seep sediments (13)                                                    |
| 6  | Marine cold seep            | Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool (14)                         |
| 1  | Marine cold seep            | Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments (15)                         |
| 1  | Deep ocean                  | Metagenomic analysis of hadopelagic microbial assemblages<br>thriving at the deepest part of Mediterranean sea, Matapan-<br>Vavilov Deep (16) |
| 1  | Deep ocean                  | Going deeper: metagenome of a hadopelagic microbial community (17)                                                                            |
| 12 | Hydrothermal vent           | Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau spreading center (18)                    |
| 2  | Hydrothermal vent           | Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system (19)                                      |
| 4  | Mangrove sediment           | The microbiome of brazilian mangrove sediments as revealed by metagenomics (20)                                                               |
| 2  | Mangrove sediment           | Rhizosphere microbiome metagenomics of gray mangroves (avicennia marina) in the red sea (21)                                                  |
| 4  | Mangrove rhizosphere        | Rhizosphere microbiome metagenomics of gray mangroves (avicennia marina) in the red sea (21)                                                  |
| 6  | Polar desert                | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (22)                                           |
| 3  | Hot desert                  | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (22)                                           |
| 3  | Tropical forest             | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (22)                                           |
| 1  | Boreal forest               | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (22)                                           |
| 1  | Temperate deciduous forest  | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (22)                                           |
| 1  | Temperate coniferous forest | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (22)                                           |
| 1  | Temperate grassland         | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (22)                                           |
| 1  | Arctic tundra               | Cross-biome metagenomic analyses of soil microbial communities and their functional attributes (22)                                           |
| 1  | Temperate forest            | Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities (23)                   |

| 1 | Tropical forest | Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis (24) |
|---|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Tropical forest | NCBI SRA id SRP001743                                                                                                                        |
| 3 | Grassland       | Structure, fluctuation and magnitude of a natural grassland soil metagenome (25)                                                             |
| 1 | Rhizosphere     | Structure, fluctuation and magnitude of a natural grassland soil metagenome (25)                                                             |
| 6 | Rhizosphere     | Structure and function of the bacterial root microbiota in wild and domesticated barley (26)                                                 |
| 6 | Rhizosphere     | Functional congruence of rhizosphere microbial communities associated to leguminous tree from Brazilian semiarid region (27)                 |
| 1 | Solar saltern   | Metagenome sequencing of the microbial community of a solar saltern crystallizer pond at Cahuil lagoon, Chile (28)                           |
| 7 | Salt desert     | A snapshot of microbial communities from the Kutch, one of the largest salt deserts in the worlds (29)                                       |
| 4 | Solar saltern   | New abundant microbial groups in aquatic hypersaline environments (30)                                                                       |

**Table S2.** Metagenomes used in this study for evaluating the protein-coding potential for the different sets of kmers.

#### REFERENCES

- 1. Jones, D.S., Schaperdoth, I. and Macalady, J.L. (2014) Metagenomic evidence for sulfide oxidation in extremely acidic cave biofilms. *Geomicrobiol. J.*, **31**, 194–204.
- 2. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., *et al.* (2009) A core gut microbiome in obese and lean twins. *Nature*, **457**, 480–484.
- 3. Johnson, S.S., Chevrette, M.G., Ehlmann, B.L. and Benison, K.C. (2015) Insights from the metagenome of an acid salt lake: The role of Biology in an extreme depositional environment. *PLoS One*, **10**, e0122869.
- 4. Satinsky,B.M., Fortunato,C.S., Doherty,M., Smith,C.B., Sharma,S., Ward,N.D., Krusche,A. V, Yager,P.L., Richey,J.E., Moran,M.A., *et al.* (2015) Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. *Microbiome*, **3**, 39.
- 5. Oh,S., Caro-Quintero,A., Tsementzi,D., DeLeon-Rodriguez,N., Luo,C., Poretsky,R. and Konstantinidis,K.T. (2011) Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. *Appl. Environ. Microbiol.*, **77**, 6000–6011.
- 6. Menzel,P., Gudbergsdóttir,S.R., Rike,A.G., Lin,L., Zhang,Q., Contursi,P., Moracci,M., Kristjansson,J.K., Bolduc,B., Gavrilov,S., *et al.* (2015) Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs. *Microb. Ecol.*, **70**, 411–424.
- 7. Lüke, C., Speth, D.R., Kox, M.A.R., Villanueva, L. and Jetten, M.S.M. (2016) Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. *PeerJ*, **4**, e1924.
- 8. Stewart, F.J., Ulloa, O. and Delong, E.F. (2012) Microbial metatranscriptomics in a permanent marine oxygen minimum zone. *Environ. Microbiol.*, **14**, 23–40.
- 9. Biddle, J.F., Fitz-Gibbon, S., Schuster, S.C., Brenchley, J.E. and House, C.H. (2008) Metagenomic signatures of the Peru margin subseafloor biosphere show a genetically distinct environment. *Proc. Natl. Acad. Sci. U.S.A.*, **105**, 10583–10588.
- 10. Biddle, J.F., White, J.R., Teske, A.P. and House, C.H. (2011) Metagenomics of the subsurface Brazos-Trinity Basin (IODP site 1320): comparison with other sediment and pyrosequenced metagenomes. *ISME J.*, **5**, 1038–1047.
- 11. Quaiser, A., Zivanovic, Y., Moreira, D. and López-García, P. (2011) Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. *ISME J.*, **5**, 285–304.

- 12. Håvelsrud,O., Haverkamp,T.H., Kristensen,T., Jakobsen,K.S. and Rike,A. (2012) Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea. *BMC Microbiol.*, **12**, 203.
- 13. Håvelsrud,O., Haverkamp,T.H., Kristensen,T., Jakobsen,K.S. and Rike,A. (2011) A metagenomic study of methanotrophic microorganisms in coal oil point seep sediments. *BMC Microbiol.*, **11**, 221.
- 14. Zhang, W., Wang, Y., Bougouffa, S., Tian, R., Cao, H., Li, Y., Cai, L., Wong, Y.H., Zhang, G., Zhou, G., *et al.* (2015) Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool. *Environ. Microbiol.*, **17**, 4089–4104.
- 15. Stokke,R., Roalkvam,I., Lanzen,A., Haflidason,H. and Steen,I.H. (2012) Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. *Environ. Microbiol.*, **14**, 1333–1346.
- 16. Smedile, F., Messina, E., La Cono, V., Tsoy, O., Monticelli, L.S., Borghini, M., Giuliano, L., Golyshin, P.N., Mushegian, A. and Yakimov, M.M. (2013) Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, Matapan-Vavilov Deep. *Environ. Microbiol.*, **15**, 167–182.
- 17. Eloe, E.A., Fadrosh, D.W., Novotny, M., Zeigler Allen, L., Kim, M., Lombardo, M.-J., Yee-Greenbaum, J., Yooseph, S., Allen, E.E., Lasken, R., et al. (2011) Going Deeper: Metagenome of a Hadopelagic Microbial Community. *PLoS One*, **6**, e20388.
- 18. Anantharaman, K., Breier, J.A. and Dick, G.J. (2015) Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. *ISME J.*, 10.1038/ismej.2015.81.
- 19. Tang, K., Liu, K., Jiao, N., Zhang, Y. and Chen, C.T.A. (2013) Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system. *PLoS One*, **8**, 1–11.
- 20. Andreote, F.D., Jiménez, D.J., Chaves, D., Dias, A.C.F., Luvizotto, D.M., Dini-Andreote, F., Fasanella, C.C., Lopez, M.V., Baena, S., Taketani, R.G., et al. (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. *PLoS One*, **7**.
- 21. Alzubaidy, H., Essack, M., Malas, T.B., Bokhari, A., Motwalli, O., Kamanu, F.K., Jamhor, S.A., Mokhtar, N.A., Antunes, A., Simões, M.F., *et al.* (2016) Rhizosphere microbiome metagenomics of gray mangroves (*Avicennia marina*) in the Red Sea. *Gene*, **576**, 626–636.

- 22. Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., Owens, S., Gilbert, J.A., Wall, D.H. and Caporaso, J.G. (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. *Proc. Natl. Acad. Sci. U.S.A.*, **109**, 21390–21395.
- 23. Stewart, F.J., Sharma, A.K., Bryant, J.A., Eppley, J.M. and DeLong, E.F. (2011) Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities. *Genome Biol.*, **12**, R26.
- 24. Kanokratana,P., Uengwetwanit,T., Rattanachomsri,U., Bunterngsook,B., Nimchua,T., Tangphatsornruang,S., Plengvidhya,V., Champreda,V. and Eurwilaichitr,L. (2011) Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. *Microb. Ecol.*, **61**, 518–528.
- 25. Delmont, T.O., Prestat, E., Keegan, K.P., Faubladier, M., Robe, P., Clark, I.M., Pelletier, E., Hirsch, P.R., Meyer, F., Gilbert, J. a, et al. (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. *ISME J.*, 6, 1677–1687.
- 26. Bulgarelli, D., Garrido-Oter, R., Münch, P.C., Weiman, A., Dröge, J., Pan, Y., McHardy, A.C. and Schulze-Lefert, P. (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. *Cell Host Microbe*, **17**, 392–403.
- 27. Taketani,R.G., Kavamura,V.N., Mendes,R. and Melo,I.S. (2015) Functional congruence of rhizosphere microbial communities associated to leguminous tree from Brazilian semiarid region. *Environ. Microbiol. Rep.*, **7**, 95–101.
- 28. Plominsky AM, Delherbe N, Ugalde JA, Allen EE, Blanchet M, et al. (2014) Metagenome Sequencing of the Microbial Community of a Solar Saltern Crystallizer Pond at Cáhuil Lagoon, Chile. *Genome Announc.*, **2**, 1–2.
- 29. Pandit, A.S., Joshi, M.N., Bhargava, P., Shaikh, I., Ayachit, G.N., Raj, S.R., Saxena, A.K. and Bagatharia, S.B. (2015) A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. *Extremophiles*, **19**, 973–987.
- 30. Ghai,R., Pašić,L., Fernández,A.B., Martin-Cuadrado,A.-B., Mizuno,C.M., McMahon,K.D., Papke,R.T., Stepanauskas,R., Rodriguez-Brito,B., Rohwer,F., *et al.* (2011) New abundant microbial groups in aquatic hypersaline environments. *Sci. Rep.*, **1**.
- 31. Volders, P.-J., Verheggen, K., Menschaert, G., Vandepoele, K., Martens, L., Vandesompele, J. and Mestdagh, P. (2014) An update on LNCipedia: a database for annotated human lncRNA sequences. *Nucleic Acids Res.*, **43**, D174–D180.

- 32. Consortium, T.U. (2014) UniProt: a hub for protein information. *Nucleic Acids Res.*, **43**, D204–D212.
- 33. Buchfink,B., Xie,C. and Huson,D.H. (2014) Fast and sensitive protein alignment using DIAMOND. *Nat. Methods*, **12**, 59–60.
- 34. Finn,R.D., Bateman,A., Clements,J., Coggill,P., Eberhardt,R.Y., Eddy,S.R., Heger,A., Hetherington,K., Holm,L., Mistry,J., *et al.* (2014) Pfam: The protein families database. *Nucleic Acids Res.*, **42**, D222–D230.

#### **CHAPTER 4. CONCLUSION**

In this thesis, the topic of the characterization of the microbial communities is addressed. The main result of this work is the recognition that the set of genes encoding oxidoreductases characterize the microbial communities better than other gene categories, including taxonomic gene markers, transporter genes, and other protein-coding genes. In recent years, the trend towards the use of functional genetic traits has grown in microbial ecology as an alternative to the taxonomic approach, which has been proven to be often unable to resolve traits or producing useful ecological patterns (3-5, 39). However, there were no compelling arguments for selecting one particular gene category over others in a global context (9, 35, 36). Noteworthy, the oxidoreductase structure of microbial communities also has the advantage of directly describing the energetic matrix and biogeochemical links of the microbial ecosystems.

This result is, however, limited by the current coverage of known functions within metagenomes. Many yet-to-discover functional genes, including genes encoding unknown oxidoreductases, might be present within the unknown functional dark matter of metagenomes. As a first step towards the elucidation of this known-unknown, a method for computing a protein-coding potential of nucleotide sequences is proposed. The emphasis of this development is to define a method as general as possible, allowing future refinements for its application to diverse types of analyses, such as protein-coding gene annotations, analysis of transcriptomic sequences and massive nucleotide sequence alignment to protein-coding sequences databases. The latter application can be accomplished by reducing the number of analyzed open reading frames for aligning (ORFs, which are six in total) to a single ORF with the highest protein-coding potential. Another possible application of this method includes the detection of novel sequences belonging to already known functional categories, such as oxidoreductase genes.

The relevance of these results relay on the recognized need for better predictors of the microbial processes on the different ecosystems currently threatened both by the unbalanced conservation and conversion of biomes and also by the global warming. On this matter, the taxonomic approach has been proved to be often unable to predict ecosystem functioning, and thus the need for trait-based approaches on microbial ecology has been claimed for years. The mentioned environmental threats demand the ability to predict the effects of a changing environment on the biosphere, and approaches that ignore the environment or focus on a few species at a time cannot address this question (5). In future developments, the results of this thesis should allow a better assessment and evaluation of the impact of the environmental stressors on the ecosystem services from the different environments of our planet. This improved diagnostic of ecosystems should be possible by focusing directly on the diversity of the redox functions encoded in the metagenomes of microbial communities, rather than on

their taxonomic structures. Thus, this approach should help in developing better management and conservation policies that effectively include not only iconic species or colonies, such as polar bears or coral reefs but also microorganisms, which underpin the nutrient recycling and biogeochemical cycles on this planet.

#### REFERENCES

- 1. Maynard-Smith J (1974) Models in Ecology (Cambridge Univ Press, Cambridge, UK).
- 2. Godfrey-Smith P (2013) Philosophy of biology (Princeton University Press, US).
- 3. Lawton JH (1999) Are there general laws in ecology? Oikos. doi:10.2307/3546712.
- 4. Roughgarden J (2009) Is there a general theory of community ecology? *Biol Philos*. doi:10.1007/s10539-009-9164-z.
- 5. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. *Trends Ecol Evol* 21:178–185.
- 6. Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487.
- 7. Doolittle WF, Papke RT (2006) Genomics and the bacterial species problem. *Genome Biol* 7:116.
- 8. Doolittle WF, Zhaxybayeva O (2009) On the origin of prokaryotic species. *Genome Res* 19:744–756.
- 9. Boon E, et al. (2014) Interactions in the microbiome: communities of organisms and communities of genes. *FEMS Microbiol Rev* 38:90–118.
- 10. Amann RI, Ludwig W, Schleifer K (1995) Phylogenetic identification and *in situ* detection of individual microbial cells without cultivation. *Microbiol Rev* 59:143–169.
- 11. Hug LA, et al. (2016) A new view of the tree of life. *Nat Microbiol*. doi:10.1038/nmicrobiol.2016.48.
- 12. Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. *Trends Genet* 17:589–596.
- 13. Giovannoni SJ, et al. (2005) Genetics: Genome streamlining in a cosmopolitan oceanic bacterium. *Science* 309:1242–1245.
- 14. Darmon E, Leach DRF (2014) Bacterial genome instability. *Microbiol Mol Biol Rev* 78:1–39.
- 15. Polz MF, Alm EJ, Hanage WP (2013) Horizontal gene transfer and the evolution of

- bacterial and archaeal population structure. *Trends Genet* 29:170–175.
- 16. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. *Proc Natl Acad Sci* 87:4576–4579.
- 17. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. *J Bacteriol*. doi:0021-9193/98/\$04.00+0.
- 18. Tyson GW, et al. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. *Nature*. doi:10.1038/nature02340.
- 19. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. *Chem Biol* 5:R245–R249.
- 20. Fuhrman JA, et al. (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. *Proc Natl Acad Sci U S A* 103:13104–13109.
- 21. Faust K, Raes J (2012) Microbial interactions: from networks to models. *Nat Rev Microbiol* 10:538–550.
- 22. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. *Ecology* 88:1354–1364.
- 23. Philippot L, et al. (2009) Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. *Environ Microbiol* 11:3096–3104.
- 24. Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. *Ecology*. doi:10.1890/11-1745.1.
- 25. Philippot L, et al. (2010) The ecological coherence of high bacterial taxonomic ranks. *Nat Rev Microbiol* 8:523–529.
- 26. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. *Proc Natl Acad Sci USA* 108:14288–14293.
- 27. Nemergut DR, et al. (2016) Decreases in average bacterial community rRNA operon copy number during succession. *ISME J* 10:1147–1156.
- 28. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. *Science* 353:1272–1277.
- 29. Bletz MC, et al. (2016) Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. *Nat Commun* 7:13699.

- 30. Dinsdale E, et al. (2008) Functional metagenomic profiling of nine biomes. *Nature* 452:629–632.
- 31. Ma X, et al. (2019) Microbial functional traits are sensitive indicators of mild disturbance by lamb grazing. *ISME J.* doi:10.1038/s41396-019-0354-7.
- 32. Doolittle WF, Booth A (2017) It's the song, not the singer: an exploration of holobiosis and evolutionary theory. *Biol Philos* 32:5–24.
- 33. Handelsman J (2005) Metagenomics: Application of genomics to uncultured microorganisms. *Microbiol Mol Biol Rev.* doi:10.1128/MMBR.69.1.195.2005.
- 34. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. *Nat Biotechnol* 35:833–844.
- 35. Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. *Science* 320:1039–1043.
- 36. Nemergut DR, et al. (2013) Patterns and processes of microbial community assembly. *Microbiol Mol Biol Rev* 77:342–356.
- 37. Heintz-Buschart A, Wilmes P (2018) Human Gut Microbiome: Function Matters. *Trends Microbiol* 26:563–574.
- 38. Sunagawa S, et al. (2015) Structure and function of the global ocean microbiome. *Science* 348:1261359–1261359.
- 39. Krause S, et al. (2014) Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. *Front Microbiol* 5:1–10.

#### PUBLISHED PAPERS WITH AFFILIATION TO THIS PROGRAM

Although only the first paper listed below is associated with this thesis, here is the complete list of papers published with affiliation to this postgraduate program.

## Redox traits characterize the organization of global microbial communities

Salvador Ramírez-Flandes<sup>a,b,c,1</sup>, Bernardo González<sup>d,e</sup>, and Osvaldo Ulloa<sup>a,b,1</sup>

<sup>a</sup>Departamento de Oceanografía, Universidad de Concepción, 4070386 Concepción, Chile; <sup>b</sup>Instituto Milenio de Oceanografía, Universidad de Concepción, 4070386 Concepción, Chile; <sup>c</sup>Programa de Doctorado en Ingeniería de Sistemas Complejos, Universidad Adolfo Ibáñez, 7941169 Santiago, Chile; <sup>d</sup>Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169 Santiago, Chile; and <sup>e</sup>Center of Applied Ecology and Sustainability (CAPES), 8331150 Santiago, Chile

Edited by Paul G. Falkowski, Rutgers, The State University of New Jersey, New Brunswick, NJ, and approved January 9, 2019 (received for review October 12, 2018)

Ramírez-Flandes, S., González, B., & Ulloa, O. (2019). Redox traits characterize the organization of global microbial communities. *Proceedings of the National Academy of Sciences*, 116(9), 3630-3635.

#### 2015. Block invariance in elementary cellular automata

Goles, E., Montalva-Medel, M., Mortveit, H., & Ramirez-Flandes, S. (2015). Block invariance in elementary cellular automata. *Journal of Cellular Automata*, *10*(1-2), 119-135.







# Enhanced metabolic versatility of planktonic sulfur-oxidizing $\gamma$ -proteobacteria in an oxygen-deficient coastal ecosystem

Alejandro A. Murillo<sup>1</sup>, Salvador Ramírez-Flandes<sup>1,2</sup>, Edward F. DeLong<sup>3</sup> and Osvaldo Ulloa<sup>1</sup>\*

- Laboratorio de Oceanografía Microbiana, Departmento de Oceanografía & Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile
- <sup>2</sup> Programa de Doctorado en Ingeniería de Sistemas Complejos, Universidad Adolfo Ibáñez, Santiago, Chile
- <sup>3</sup> Department of Biological Engineering and Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

Murillo, A. A., Ramírez-Flandes, S., DeLong, E. F., & Ulloa, O. (2014). Enhanced metabolic versatility of planktonic sulfur-oxidizing γ-proteobacteria in an oxygen-deficient coastal ecosystem. *Frontiers in Marine Science*, *1*, 18.

The ISME Journal (2015) 9, 1264–1267 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15

# Genomic potential for nitrogen assimilation in uncultivated members of *Prochlorococcus* from an anoxic marine zone

Marcia Astorga-Eló $^{1,2}$ , Salvador Ramírez-Flandes $^{1,3}$ , Edward F $\rm DeLong^{4,5,6}$  and Osvaldo Ulloa $^1$ 

¹Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile; ²Programa de Magíster en Bioquímica y Bioinformática, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; ³Programa de Doctorado en Ingeniería de Sistemas Complejos, Universidad Adolfo Ibáñez, Santiago, Chile; ⁴Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; ⁵Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA and ʿDaniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA

Astorga-Eló, M., Ramírez-Flandes, S., DeLong, E. F., & Ulloa, O. (2015). Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone. *The ISME journal*, *9*(5), 1264-1267.

144

### Distinctive Archaeal Composition of an Artisanal Crystallizer Pond and Functional Insights Into Salt-Saturated Hypersaline Environment Adaptation

Alvaro M. Plominsky<sup>1,2†‡</sup>, Carlos Henríquez-Castillo<sup>1,2†</sup>, Nathalie Delherbe³, Sheila Podell⁴, Salvador Ramirez-Flandes²,⁵, Juan A. Ugalde⁶,७, Juan F. Santibañez¹, Ger van den Engh³, Kurt Hanselmann³, Osvaldo Ulloa¹,², Rodrigo De la Iglesia¹o, Eric E. Allen⁴,¹¹\* and Nicole Trefault¹²\*

<sup>1</sup> Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile, <sup>2</sup> Instituto Milenio de Oceanografía, Concepción, Chile, <sup>3</sup> Biology Department, Cell and Molecular Biology Joint Doctoral Program with UC San Diego, San Diego State University, San Diego, CA, United States, <sup>4</sup> Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States, <sup>5</sup> Programa de Doctorado en Ingeniería de Sistemas Complejos, Universidad Adolfo Ibáñez, Santiago, Chile, <sup>6</sup> uBiome, Inc., San Francisco, CA, United States, <sup>7</sup> Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile, <sup>8</sup> Center for Marine Cytometry, Concrete, WA, United States, <sup>9</sup> Department of Earth Sciences, ETH Zürich, Zurich, Switzerland, <sup>10</sup> Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile, <sup>11</sup> Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States, <sup>12</sup> GEMA Center for Genomics, Ecology and Environment, Faculty of Sciences, Universidad Mayor, Santiago, Chile

Plominsky, A. M., Henríquez-Castillo, C., Delherbe, N., Podell, S., Ramirez-Flandes, S., Ugalde, J. A., ... & De la Iglesia, R. (2018). Distinctive Archaeal Composition of an Artisanal Crystallizer Pond and Functional Insights into Salt-Saturated Hypersaline Environment Adaptation. *Frontiers in microbiology*, *9*, 1800

145

### Ostreococcus tauri Luminescent Reporter Lines as Biosensors for Detecting Pollution From Copper-Mine Tailing Effluents in Coastal Environments

Carlos Henríquez-Castillo 1,2,3, Hugo Botebol<sup>4</sup>, Adelaide Mouton<sup>4</sup>, Salvador Ramírez-Flandes 2,3,5, Jean-Claude Lozano 4, Gaelle Lelandais 6, Santiago Andrade 7,8, Nicole Trefault 8, Rodrigo De la Iglesia 1\* and François-Yves Bouget 4\*

<sup>1</sup> Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, <sup>2</sup> Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile, <sup>3</sup> Instituto Milenio de Oceanografía, Concepción, Chile, <sup>4</sup> Sorbonne Universités, UPMC Univ Paris 06 & Centre National pour la Recherche Scientifique, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France, <sup>5</sup> Programa de Doctorado en Ingeniería de Sistemas Complejos, Universidad Adolfo Ibáñez, Santiago, Chile, <sup>6</sup> Centre National de la Recherche Scientifique, Institut Jacques Monod, Université Paris Diderot (Paris 07), Paris, France, <sup>7</sup> Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, <sup>8</sup> Centro GEMA- Genómica, Ecología y Medio Ambiente, Facultad de Ciencias, Universidad Mayor, Santiago, Chile

Henríquez-Castillo, C., Botebol, H., Mouton, A., Ramírez-Flandes, S., Lozano, J. C., Lelandais, G., ... & Bouget, F. Y. (2018). Ostreococcus tauri luminescent reporter lines as biosensors for detecting pollution from copper-mine tailing effluents in coastal environments. *Frontiers in Environmental Science*, 6.