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Abstra
t

The main goal of this thesis, relies the dynami
s of a reversible and 
on-

servative 
ellular automaton Q2R model. Q2R is a automaton that runs on a

two-dimensional grid of �nite size and is reversible in a physi
al sense, that is,

not only is the automaton rule invertible, but the ba
kward rule reads exa
tly

the same as the forward one. This model is a dynami
al variation of the Ising

model for ferromagnetism that possesses quite a ri
h and 
omplex dynami
s.

As expe
ted, the Q2R automaton only possesses �xed points and periodi


orbits and it has been shown that possesses an energy like quantity, and, at

least an extra 
onserved quantity. Although, the dynami
s in
ludes only �xed

points and periodi
 orbits, numeri
al simulations show that the system ex-

hibits a ferromagneti
 phase transition in the large system size limit for a well

de�ned 
riti
al energy.

In the present work, we 
hara
terize the 
on�guration spa
e, that is 
om-

posed of a huge number of 
y
les with exponentially long periods. More pre-


isely, we quantify the probability distribution fun
tions of states in terms of

the aforementioned invariants. We show that the dynami
s of the system in

the phase spa
e appears to be, depending on the energy, a random walk or a

Levy �ight.

The main 
ontribution of the present thesis is the appli
ation of a 
oarse-

graining approa
h that allows to write a 
oarse-grained master equation, whi
h


hara
terizes equilibrium and non equilibrium statisti
al properties, for the

Q2R model. Following Ni
olis and 
ollaborators, a 
oarse-graining approa
h

is applied to the time series of the total magnetization, leading to a 
onsistent

master equation that governs the ma
ros
opi
 irreversible dynami
s of the

Q2R automata. The methodology is repli
ated for various latti
e sizes. In the


ase of small systems, we show that the master equation leads to a tra
table

probability transfer matrix of moderate size, whi
h provides a master equation

for a 
oarse-grained probability distribution. The method is validated and

some expli
it examples are dis
ussed.

ii



iii



iv



Contents

Agrade
imientos i

Abstra
t ii

Introdu
tion 1

1 Around of the Ising model 5

1.1 Ising-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 The time-dependent Glauber-Ising Model . . . . . . . . . . . . . . 7

1.1.3 The Q2R 
ellular automata . . . . . . . . . . . . . . . . . . . . . . 8

1.1.4 S
helling model for So
ial segregation. . . . . . . . . . . . . . . . . 9

1.1.5 Bootstrap per
olation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.6 Re
apitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Ising patterns, transitions, and dynami
al behavior . . . . . . . . . . . . . 12

1.2.1 Glauber and De
ision-Choi
e model dynami
s . . . . . . . . . . . . 12

1.2.2 S
helling dynami
s . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Bootstrap per
olation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The Q2R Cellular Automaton 29

2.1 The Q2R model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 The rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.3 Staggered Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.4 The Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.5 Mean Field Approximation . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Dynami
s of the Q2R model . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Initial 
onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 One-dimensional Systems . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Two-dimensional Systems . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.4 Ferromagneti
 and Paramagneti
 Behaviors . . . . . . . . . . . . . 36

2.2.5 Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



vi CONTENTS

2.2.6 Exa
t results from the Ising model in statisti
al me
hani
s . . . . . 40

3 The Phase Spa
e 
hara
terization 43

3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Exa
t phase spa
e 
al
ulation for very small latti
es . . . . . . . . . . . . . 44

3.2.1 Phase spa
e 2× 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Exa
t Phase Spa
e for the N = 4× 4 
ase. . . . . . . . . . . . . . . 44

3.3 The evolution of states in 
on�guration spa
e . . . . . . . . . . . . . . . . 46

3.3.1 Sensitivity to initial 
onditions . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Levy �ight stru
ture . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Con�guration spa
e for a system 256× 256 . . . . . . . . . . . . . 50

4 Coarse-Graining and Master Equation 53

4.1 General S
ope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 General formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Expli
it 
al
ulation for the transition probability matrix Ŵ . . . . 57
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Introdu
tion

The Ising model, introdu
ed in the early 1920's by Lenz [1℄ and Ising [2℄ as a thermody-

nami
al model for des
ribing ferromagneti
 transitions, has evolved as one of the most

proli�
 theories in the twenty 
entury, opening a huge number of new areas of knowledge.

The importan
e of the Ising model raises in its universality and robustness, indeed despite

its simpli
ity, this model has been the starting point for the emergen
e of various sub�elds

in physi
al (and so
ial) s
ien
es, namely, phase transitions, renormalisation group theory,

spin-glasses, latti
e �eld theories, among others [3℄.

A 
ellular automata approa
h to the two-dimensional Ising model is provided by the

Q2R model, �rst introdu
ed by Vi
hnia
 in the mid-80's [4℄, where �Q� means the number

of neighbors (quatre in fren
h), �2� indi
ates a two-step dynami
s, and �R� is for reversibil-

ity. This model exhibits several important features of physi
al systems: a deterministi


rule, reversibility and is formally not ergodi
, be
ause it only possesses �nite periodi
 or-

bits. It is 
ru
ial to noti
e that sin
e the evolution of the dynami
s involves only dis
rete

steps, with boolean values 0 and 1, there is no any numeri
al or round errors asso
iated

to �nite approximations.

The study of the dynami
s and properties of the Q2R model has a long history. The

�rst work was done by Vi
hnia
 [4℄ and Pomeau [5℄, who showed that the energy E is 
on-

served. Then, Herrmann [6℄ implemented the Q2R algorithm to study the two-dimensional

Ising model in the frame of the mi
ro-
anoni
al ensemble. In this work, Herrmann used

the 
on
ept of magnetization and represented its magnitude as a fun
tion of the initial

energy, displaying the �rst pattern pi
ture for the phase transition of the Q2R model.

Later, Herrmann, Carmesin and Stau�er [7℄ studied numeri
ally the probability to rea
h

an �in�nitely� long period for some energy values. Moreover, if the energy is large enough,

this probability tends to one. On the other hand, Takesue [8℄ studied the Q2R model from

the point view of reversibility, using statisti
al me
hani
s. His studies 
on
erned expli
-

itly all 
lass of rules for the one dimensional 
ase, the Q2R being only a spe
ial 
ase.

However, the Q2R (90R in his terminology), is the analogue of an ideal gas of parti
les

with speeds +1 or −1, whi
h is a system that 
annot rea
h equilibrium in pra
ti
e, but, it

is ergodi
 only in thermodynami
al equilibrium. Ultimately the Q2R model was studied

numeri
ally for the irreversible behavior and the existen
e of a spontaneous transition

1
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from a non-
oherent state to a 
oherent state [9℄.

In order to quantify the behavior of the Q2R 
ellular automata, we have deeply de-

s
ribed spin dynami
s in phase spa
e, through the study of a ma
ros
opi
 observable,


alled Magnetization (M), de�ned as the sum of all the states at ea
h time step. Previ-

ously, it has been stressed that on two-dimensional latti
es, the system exhibits a phase

transition when the value of the energy is 
lose to the 
riti
al energy of the Ising model,

Ec/N = −
√
2. Also, in the literature [9℄ it has been observed numeri
ally two di�erent

behaviors of the system, de�ned in term of M , and as fun
tion of energy: ferromagneti
,

paramagneti
 and metastable.

The goal of this thesis, 
onsists in the development of a detailed des
ription of the

above mentioned behaviors based on the 
on
epts of statisti
al methods, using more ex-

tensive numeri
al tools (OpenMP libraries in C++ language) than previous approa
hes.

To full�l the requirements for this goal, several methods of Statisti
al Me
hani
s have

been used, for instan
e, Phase diagrams, Coarse-graining, probability distribution fun
-

tions (PDF), among others [10, 11℄.

The main 
ontribution of this thesis is the appli
ation, by of following [12, 13℄, a 
oarse-

graining approa
h that allows us to write a 
oarse-grained master equation, whi
h 
har-

a
terizes equilibrium and non-equilibrium statisti
al properties, for the Q2R automata.

We 
an see that this 
oarse-graining te
hnique is a powerful tool, whi
h redu
es the in-

formation for the whole system to a tra
table probability transfer matrix whi
h simpli�es

the original master equation.

A se
ond 
ontribution fo
used on the appearan
e of orbits, that is, traje
tories de�ned

by the same initial and �nal 
on�gurations, with di�erent periods at the same energy level.

In order to quantify these orbits, we de�ned an observable, 
alled Hamming or Manhat-

tan distan
e, between the states at time steps t and t+ 1. Thus, we have shown how the

system presents two types of behaviors: random walks and Lévy �ights.

This thesis is organized as follows. The �rst 
hapter 1 dis
usses di�erent models with


ommon features arising in a 
lass of Ising-based models. In the se
ond 
hapter 2, the

fundamental properties of the Q2R model are presented: the dynami
s in one and two

dimensions, the behavior of the system when the energy is near the 
riti
al value Ec,

and the 
orresponding phase transition. The third 
hapter 3, we present the phase spa
e


hara
terization. Finally, the 
hapter 4 presents a 
oarse-graining.
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Chapter 1

Around of the Ising model

1.1 Ising-based models

In this 
hapter, we shall dis
uss four distin
t appli
ations of Ising-based models with

appli
ations to both statisti
al me
hani
s and so
ial s
ien
es. The �rst one is devoted

to the Glauber-Ising time dependent model with appli
ations to de
ision-
hoi
e theory

in e
onomi
s and so
ial s
ien
es. In the sixties Glauber [14℄, introdu
ed an sto
hasti


time dependent rule to mimi
 the statisti
al properties of the original Ising problem.

Glauber's dynami
s has been 
onsidered in the 
ontext of so
ial s
ien
es by Bro
k and

Durlauf [15, 16℄, and, more re
ently, by Bou
haud [17℄.

The se
ond topi
 is Q2R automata model introdu
ed in the 80's by Vi
hnia
 [4℄. The

Q2R

1

possess time reversal symmetry, whi
h is at the 
ore of any fundamental theory in

physi
s. Moreover, the temporal evolution of this automata 
onserves a quantity whi
h

is 
losely related to the energy of the Ising model [5℄. We are interested in this model

be
ause is a natural starting point for studying the statisti
al and typi
al irreversible

behavior of reversible systems. As shown in Ref. [9℄, this system evolves in an irreversible

manner in time towards an �statisti
al attra
tor�, moreover the ma
ros
opi
 observable,

the temporal average of the global magnetization, depends on the value of the initial

energy following a law whi
h is exa
tly the one obtained theoreti
ally by Onsager [18℄

and Yang [?℄, more than 60 years ago. Moreover, in Ref. [19℄ it is shown how this model

exhibits the same features of Hamiltonian systems with many degrees of freedom, that is,

a sensibility to initial 
onditions, positive Lyapunov exponents, among others.

The se
ond model that we shall dis
uss in this arti
le 
on
erns the S
helling model of

so
ial segregation, introdu
ed in the early seventies by Thomas C. S
helling [20, 21, 22℄.

This model be
ame one of the paradigm of an individual-based model in so
ial s
ien
e.

1

Q by four, quatre, in fren
h, 2 by two steps automata rule as expli
itly written below, and R by

reversible.

5



6 CHAPTER 1. AROUND OF THE ISING MODEL

S
helling's main 
ontribution is that shows on the formation of a large s
ale pattern of

segregation as a 
onsequen
e of purely mi
ros
opi
 rules. More re
ently, it has been shown

that the Ising energy, whi
h is a good measure of segregation, a
ts as a Lyapunov poten-

tial of the system is driven, under parti
ular 
onditions, by a stri
tly de
reasing energy

prin
iple [23℄.

Finally, we shall dis
uss a model for dissemination's disease known as Bootstrap per-


olation, �rst introdu
ed in the late seventies by Chalupa, Leath and Rei
h [24℄. In this

model a healthy individual may be infe
ted if the majority of its neighbors are infe
ted.

On the other hand an infe
ted individual never re
overs, so it remains infe
ted forever.

This model has been used as a model for disease's propagation. One of the most impor-

tant questions arising is the determination of the 
riti
al number of infe
ted individuals

to 
ontamine the whole population.

1.1.1 Generalities

The latti
e and the neighborhood

All models dis
ussed below, display similar features, the system 
onsisting of a latti
e

with N ≫ 1 nodes, in whi
h ea
h node, k, may take a binary value xk(t) = ±1 at a given
time. Ea
h node k on the latti
e intera
ts, in general, with all other individuals, with

an intera
tion 
oe�
ient Jik (i denotes an arbitrary node). But in parti
ular, a node, k,
may intera
t only with a �nite neighborhood denoted by Vk. The number of neighbors

for site k, |Vk|, is the total number of non zero Jik for ea
h node. In Fig. 1.1 we show, as

an example, four possible latti
e 
on�gurations.

The �energy� and the �magnetization�.

We de�ne the ma
ros
opi
 observables of the system, by analogy with the original Ising

model of ferromagnetism, as follows:

E[{x}] = −1

2

∑

i,k

Jikxi(t)xk(t) , (1.1)

M [{x}] =
N
∑

k=1

xk(t) . (1.2)

These quantities will be the pertinent observables, and we shall use them to 
lassify the

distin
t 
ases that we will be des
ribed in the next se
tions.
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Figure 1.1: Examples of latti
es and neighborhoods. We illustrate expli
itly: a) an arbi-

trary network with a random number of neighborhoods; and three periodi
 regular latti
es

in two spa
e dimensions: b) a square latti
e with a von-Neuman neighborhood of 4 in-

dividuals (the original latti
e of the Ising model with the nearest neighborhood); 
), a

square latti
e with a Moore neighborhood of 8 individuals, and d) a hexagonal latti
e

with 6 neighborhoods.

1.1.2 The time-dependent Glauber-Ising Model

Glauber [14℄, in the sixties, introdu
ed a dynami
al model for the study of the Ising model.

The rule governing Glauber's model is the following:

Let, the lo
al magnetization at the site k and at a time t, be:

Uk(t) = B +
∑

i

Jikxi(t), (1.3)

with B being an external magneti
 �eld. Then, the spin's value at the next time step,

t+ 1, will be

xk(t+ 1) = sgn(Uk(t)), (1.4)

that is xk(t + 1) = +1 if Uk(t) ≥ 0 and xk(t + 1) = −1 if Uk(t) < 0. We 
all (1.4) the

deterministi
 rule. In probability language, if Uk(t) ≥ 0, then xk(t + 1) would be +1

with probability 1, and it would be -1 with probability 0. This rule is updated in parallel

fashion.
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Next, this deterministi
 rule may be modi�ed by a probabilisti
 rule, in the following

way:

xk(t+ 1) =







+1 with probability p = 1
1+e−βUk(t)

−1 with probability p = 1
1+eβUk(t)

(1.5)

Noti
e that in the limit β → ∞ one re
overs the deterministi
 behavior (1.4), while in

the limit β → 0 one rea
hes a 
ompletely random (binomial) dynami
s regardless of the

value of U , that is xk(t+ 1) would be +1 with probability 1/2.

The Glauber rule is indeed a Markov 
hain whi
h manifests, in a perfe
t way, the

statisti
al properties of the Ising phase transition for the 
ase of Von-Neuman neigh-

bourhoods, and it also agrees with the mean �eld approximation for the 
ase of a large

number of neighbours . Finally, nowadays the Glauber dynami
s is the starting point for

numeri
al simulations of spin glasses systems with random values for the Jik 
oe�
ients.

Random De
ision-Choi
e Model

Let us 
onsider now a random 
hoi
e model [15, 16, 17℄ in the 
ontext of so
ial s
ien
es.

An individual takes a 
hoi
e based on a 
ombination of de
ision quantities, namely an

individual �de
ision parameter� fk, a �global de
ision� or �publi
 information� parameter

F (t) (whi
h 
ould be in
luded in the previous individual de
ision parameter) and a �so
ial

pressure�

∑

i Jikxi(t).

Next take the so 
alled �per
eive overall in
entive agent fun
tion�, by Bou
haud [17℄.,

Uk(t) = fk + F (t) +
∑

i

Jikxi(t), (1.6)

and follow the Glauber deterministi
 dynami
s (1.4) or more generally the Glauber

random dynami
s (1.5).

Due to both, the Ising-like feature as the Glauber Dynami
s evolution rule, a phase

transition is known to appear. This transition favors the de
ision into one or another of

the two options of the binary variable.

1.1.3 The Q2R 
ellular automata

The Q2R rule 
onsiders the following two-step rule whi
h is updated in parallel [4℄ this

two-step rule may be naturally re-written as a one-step rule with the aid of an auxiliary
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dynami
al variable [5℄.:

xk(t + 1) = xk(t− 1)×







+1 if
∑

i Jikxi(t) 6= 0

−1 if
∑

i Jikxi(t) = 0
. (1.7)

Naturally, it is possible to add, without any di�
ulty, an external magneti
 �eld B.
However, some 
aution should be taken into a

ount: the model works if Uk(t) = B +
∑

i Jikxi(t), may vanish, therefore, B and the Jik fa
tors should be integers. For instan
e

in the 
ase of a �nite neighborhood, B + |Vk| should be an even number.

The rule (1.7) is expli
itly invariant under a time reversal transformation t + 1 ↔ t − 1.
Moreover, as shown by Pomeau [5℄, the following quantity, that we may 
all an energy,

despite not being exa
tly the energy of the Ising model.

E[{xk(t), xi(t− 1)}] = −1

2

∑

i,k

Jikxk(t)xi(t− 1), (1.8)

is preserved under the dynami
s de�ned by the Q2R rule (1.7). Moreover, the energy is

bounded by −2N ≤ E ≤ 2N .

1.1.4 S
helling model for So
ial segregation.

S
helling model, is also 
hara
terized by a binary variable xk whi
h may take values +1

and -1. We shall say that an individual xk at the node k is �happy� at his site, if and only

if, there are less than θk neighbors at an opposite state. θk is a toleran
e parameter that

depends in prin
iple on the node and, it may take all possibles integer values, su
h that

0 < θk < |Vk| (we ex
lude the 
ases θk = 0 and θk = |Vk| from our analysis).

The satisfa
tion 
riterion reads the 
riteria (1.9) may be uni�ed in a single 
riteria [23℄

(multiplying both sides of the two inequalities by xk):

an individual xk is unhappy at the node k if , and only if, xk

∑

i∈Vk

xi ≤ |Vk| − 2θk,

whi
h is a kind of energy density instead of the threshold 
riteria found in Glauber dy-

nami
s (1.4).

An individual xk is unhappy at the node k if and only if:

∑

i∈Vk

xi =







|Vk| − 2nk(−1) ≤ |Vk| − 2θk, if xk = +1

2nk(−1)− |Vk| ≥ 2θk − |Vk|, if xk = −1.
(1.9)
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Here nk(+1) is the number of neighbors of xk that are in the state +1; and, nk(−1)
the number of neighbors of xk in the state −1, naturally nk(+1) + nk(−1) = |Vk|.

Having labeled all di�erent un-happy individuals, one takes randomly two of them in

opposite states (one +1, and one -1) and ex
hanges them. Even when this is not exa
tly

the original S
helling's rule, the present S
helling's proto
ol is a simpler one. In any 
ase,

it 
an be modi�ed in a straightforward way to in
lude for example va
an
ies [25, 26℄,

di�erent probabilities of ex
hange [25℄, multiple states variables [27℄, et
.

If k and l are these random nodes, then the evolution rules:

xk(t) → xk(t + 1) = −xk(t), xl(t) → xl(t + 1) = −xl(t)

and for all other nodes i 6= k& l remain un
hanged xi(t) → xi(t+ 1) = xi(t).

The proto
ol is iterated in time forever or until the instant when one state does not

have any unhappy individuals to be ex
hanged.

Noti
e, that S
helling 
riteria (1.9) is deterministi
, however the ex
hange is a random

pro
ess, therefore two initial 
on�gurations will not display the same behavior in detail,

but they will evolve to the same statisti
al attra
tor [28℄.

S
helling's proto
ol, de�ned above, has a remarkable property: if θk > |Vk|
2

then any

ex
hange k ↔ l, will always de
rease the energy

E[{x}] = −1

2

∑

k

∑

i∈Vk

xi(t)xk(t). (1.10)

The energy (1.10) follows from (2.5), whenever Jik = 1 for neighbors and Jik = 0
otherwise.

For a proof, we refer to Ref. [23℄. We shall only add the following remark: if θk > |Vk|
2
,

then the evolution ne
essarily stops in �nite time. This is be
ause the energy (1.10)

is bounded from below by E0 = −1
2

∑N
k=1 |Vk| and be
ause the energy (2.5) de
reases

stri
tly. On the other hand, for θk < |Vk|
2
, the energy may in
rease or de
rease after an

ex
hange indistin
tly.

1.1.5 Bootstrap per
olation

We shall 
onsider the problem of bootstrap per
olation for a given latti
e [24℄. As in

the previous models, ea
h node k intera
ts with |Vk| neighbors, the neighborhood de�ned

by the set Vk. As before the state, xk may take values +1 and -1 depending on if it
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is �infe
ted� or not. At a given �time� the state xk(t) evolves into xk(t + 1) under the
following parallel rule: if a site is not infe
ted, and if the majority of its neighbors are

infe
ted, then the site be
omes infe
ted [29℄. On the other hand, if the site is already

infe
ted it keeps its infe
ted state.

Summarizing, the evolution rule, whi
h is updated in parallel, may be written in the

following general way:

if xk(t) = −1 and
∑

i∈Vk

xi(t) > 0, then xk(t+ 1) = +1, (1.11)

otherwise, if xk(t) = 1 then xk(t+ 1) = 1.

From the dynami
s it follows dire
tly that the energy (1.10) de
reases in time, E(t+
1) ≤ E(t), as well as the magnetization in
reases in time: M(t+1) ≥ M(t). As in the 
ase
of the S
helling model, be
ause the energy is a stri
tly de
reasing fun
tional, and be
ause

it is bounded from below in a �nite network, then the dynami
s always stops in �nite time.

Finally, let us 
omment that a problem that has in
reased in interest in re
ent times

deals with the question of how the total infe
tion depends on the initial 
on�guration

whi
h is randomly distributed and su
h that a site will be at the state xk = +1 with a

probability p [30℄.

Naturally, if initially p ≈ 1/2, then every site has in average the same number of

xk = +1 states and xk = −1 in its neighborhood, then the system would per
olate

almost in one step. However, as p de
reases, one 
an de�ne a probability, P (p), whi
h
is the probability that the system would per
olate at the end of the evolution pro
ess.

Though P (p) 
ount be determined expli
itly at the end this probability 
an be numeri
ally

determined.

1.1.6 Re
apitulation

The afore mentioned models have in 
ommon a threshold 
riteria (1.4), (2.3), (1.9), and

(1.11) the subsequent dynami
s follows di�erent rules. Therefore one should expe
t dis-

tin
t properties.

The Glauber Dynami
s does not preserve neither the energy or magnetization, however

the Q2R dynami
s does preserve only the energy but does not preserve the magnetization.

The S
helling model does preserve only the magnetization, but if θk > |Vk|/2 the system's

energy is stri
tly a de
reasing fun
tion. Finally, in the infe
tion model of se
tion 1.1.5,

the energy stri
tly de
reases whereas the magnetization is an in
reasing fun
tion of time.
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Table 1.1: Re
apitulation of the four above mentioned models, and its main 
onservation

properties.

Dynami
s Evolution Criteria Energy Magnetisation

Glauber sgn(B +
∑

i Jikxi(t)) Not Conserved Not Conserved

Q2R

∑

i Jikxi(t)) = 0 Conserved Not Conserved

S
helling sgn(xk(t))
∑

i∈Vk
xi(t) ≤ |Vk| − 2θk Not Conserved

a
Conserved

Bootstrap

∑

i∈Vk
xi(t) > 0 ∆E < 0 ∆M > 0

a
If θk > |Vk|/2 then ∆E < 0.

1.2 Ising patterns, transitions, and dynami
al behavior

In this se
tion, we shall roughly des
ribe the essential phenomenology of the Ising-like

models and rules des
ribed in the previous se
tion, whether they are governed (or not)

by the rules of 
onservation of magnetization energy.

1.2.1 Glauber and De
ision-Choi
e model dynami
s

The time dependent Glauber-Ising model shows a very ri
h phenomenology. As su
h, the

model's behavior has been explored using mean �eld approximation (the Curie-Weiss law)

as well as by dire
t simulations of the rule (1.5). Here our ma
ros
opi
 observable is the

total magnetization per site, namely M(t)/N and were M(t) is de�ned in equation (1.2).

In what it follows, we will only show results for the dire
t simulation of the Glauber-

Ising model (1.4) and we shall use the terminology of so
ial s
ien
es (1.14). In Figure 1.2

we show three distin
t states 
hara
terized by di�erent values of the parameter of �irra-

tionality� β, In statisti
al physi
s, β is the inverse of the thermodynami
al temperature,

β ∼ 1/T. and a null value for the publi
 information parameter F (t).
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(a) (b) (
)

Figure 1.2: Snapshots of the patterns for the Glauber-Ising model. The simulation is

for a N = 256× 256 periodi
 latti
e with von Neuman neighborhood. Moreover we take

fk = 0 and F = 0. The parameter of �irrationality" and the magnetization averages are,

respe
tively : a) 
orresponds to a paramagneti
 phase for β = 0.53 and 〈M〉 /N = 0.0006;
b) a 
riti
al phase for β = 0.82 and 〈M〉 /N = 0.02; and 
) 
orresponds to a ferromagneti


phase β = 1.8, and 〈M〉 /N = 0.39.

In Fig. 1.3 we show two di�erent bifur
ation diagrams for the mean magnetization

〈M〉 /N versus the irrationality parameter β,for non-zero or null value for the publi


information parameter F (t). Ea
h point, was 
al
ulated for a total of approximately

2 × 104 time steps. We 
an readily observe the appearan
e of a bifur
ation for the 
ase

F = 0 and β greater than βc ≈ 0.8.

0.5

-0.5

0

1

-1
0.5 1 1.5

(a)

0.5

-0.5

0

1

-1
0.5 1 1.5

(b)

Figure 1.3: Average magnetization 〈M〉 versus β. The averages are taken from long time

simulations of approximately 20000 time steps. In both 
ases the random external �eld

is settled to zero fk = 0. a) Case of F = 0; and , b) Cases of F = ±0.1 and F = 0.2.

Therefore, the time dependent Glauber-Ising model displays a transition from a para-
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magneti
 to a ferromagneti
 phase for βc ≈ 0.8 whi
h is in agreement with the 
riti
al

threshold value of the Ising model [31℄, βc = log(1 +
√
2) ≈ 0.881 . . .

1.2.2 S
helling dynami
s

We shall 
hara
terize the dynami
s of S
helling model for the parti
ular 
ase in whi
h the

system is a two dimensional periodi
 latti
e, and ea
h site possess the same neighborhood


onsisting in the |V | 
losest individuals. We shall 
onsider also that the parameter θk is

uniform, that is, θk = θ.

Fig. 1.4 displays an example of typi
al patterns arising in the S
helling's model. As it


an be observed, the dynami
s depends 
riti
ally on the value of the toleran
e parameter

θ, de�ned above. More pre
isely, if θ is larger or smaller than θc1 = |V |/4, θc = |V |/2,
and θc2 = 3|V |/4.

The initial state was 
hosen randomly with a binomial distribution, that is xk(t =
0) was +1 with probability 1/2 and -1 with the same probability. Hen
e, the total

magnetization is M(t = 0) ≈ 0, and it is kept �xed during the evolution.

The simulations shown in Fig. 1.4, 
orresponds to a S
helling rule with a vi
inity of

|V | = 20 elements. Clearly three di�erent 
ases 
an be distinguished, and at least three

transition points, namely θc1 = |V |/4, θc = |V |/2, and θc2 = 3|V |/4.

For 1 < θ ≤ |V |/4 (see Fig. 1.4-a) one observes a non-segregated pattern, the states

xk = ±1 are swapping, more or less randomly in the system, without a formation of any

kind of large s
ale stru
ture. In a 
oarse graining s
ale, for instan
e, the s
ale of the vi
in-

ity, the 
oarse-grained magnetization, namely, m = 1
|V |

∑

i∈Vk
xi(t) is zero everywhere, as

well as the energy noti
e that, as already said, the total magnetization is 
onstant in

the S
helling model. Therefore we 
annot mat
h the S
helling transitions observed here

with the phase transition for the 
ases of the Glauber-Ising and the Q2R models. In this

situation, it is tempting to make an analogy with the Ising paramagneti
 phase.

For |V |/4 < θ ≤ |V |/2, one observes how a segregation pattern arises (see Fig. 1.4-b &


). More important the 
oarse-grained magnetization is lo
ally non-zero, and the pattern

presents domain walls, whi
h are 
hara
teristi
 of a ferromagneti
 phase in the Ising-like

terminology.

For |V |/2 < θ ≤ 3|V |/4, one observes also segregation (see Fig. 1.4-e), but the dy-

nami
s stops in a �nite time. The �nal state is a quen
hed disordered phase for whi
h

one may 
onje
ture an analogy with a �spin glass� phase, and the appearan
e of a kind

of quasi long-range order.
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(a) (b) (
)

(d) (e) (f)

Figure 1.4: S
helling's patterns for various satisfa
tion parameter θ in a square periodi


latti
e of N = 256 nodes. The vi
inity is uniform and 
ontains |V | = 20 elements. a)

θ = 5; b) θ = 6; 
) θ = 9; d) θ = 10 (eventually this 
ase the two spots observed merges

into a single one, this 
oales
en
e dynami
s, however, it happens after a longtime); e)

θ = 11 and f) θ = 15, are two 
ases whenever the energy is a stri
tly de
reasing fun
tion

so the dynami
s stops in �nite time, in the former 
ase this happens after a time so

segregation is possible, however in the later 
ase the dynami
s stops shortly after the

S
helling algorithm started. For θ = 15 we say that this is a frustrated dynami
s, be
ause

the system 
annot rea
h the ground state energy be
ause the dynami
s stops after one of

the population is 
ompletely happy.

The 
ase θ = 3|V |/4 in (see Fig. 1.4-f) it is interesting be
ause, although the are some

islands of segregation, the system also re
overs its original heterogeneity, with almost a

null 
oarse-grained magnetization m.

1.2.3 Bootstrap per
olation

The spin dynami
s for the 
ase of Bootstrap per
olation of Se
tion 1.1.5 is always 
hara
-

terized by an energy de
reasing prin
iple, moreover be
ause a +1 spin never �ips to a -1,

the magnetization is mandated to in
rease up to a 
onstant value be
ause of the impossi-
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bility to infe
t more individuals, or simply be
ause the system has been fully per
olated

by the +1 spin states.

As said in Se
. 1.1.5, we shall 
onsider a random initial state with a fra
tion p of the

spins at the state xk = +1 (that is, a fra
tion p of the population would be infe
ted).

(a) (b) (
)

(d) (e) (f)

Figure 1.5: Bootstrap per
olation's patterns at six di�erent time steps. The network is

a square periodi
 latti
e of N = 2562 sites with a uniform vi
inity of |V | = 24 sites. a)

display the initial random state with an initial fra
tion 0.2 of xk = +1 (that is, a given site
is +1 with probability 0.2, and -1 with probability 0.8); In b) one observes the nu
leation

of bubbles, whi
h eventually would propagate the +1 state over the random phase; In 
)

one observes that some infe
ted bubbles have not rea
h the 
riti
al size and they do not

propagate; however, in d) big bubbles invade the system transforming the interfa
e in a

front propagation over the whole system e) and f).

It is observed, that for a moderately large value of p, say p ≈ 1/2, the system be
omes

unstable very fast, per
olating the xk = +1 state everywhere almost instantaneously.

However, as one de
reases p, the system presents a well de�ned s
enario. Fig. 1.5

shows the typi
al evolution of a per
olation pattern in time. More pre
isely, the system

nu
leates bubbles of infe
ted states (xk = +1) and two s
enarios are possible, either these
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bubbles 
ontinues to grow or they stop (
ompare Fig. 1.5 b & 
). In analogy with the

instability of a �rst order phase transition, it should exist a 
riti
al radius of nu
leation

that depends expli
itly on p.

R

(a)

A(R)

a

R

(b)

Figure 1.6: a) S
heme for the mean �eld estimation of the 
riti
al radius of infe
tion. The

gray region represents the random initial data with a fra
tion p of +1. b) Details of the

geometry for the 
al
ulation of A(R).

This 
riti
al radius of nu
leation maybe estimated in the limit of large vi
inity, in

other words, in the range of validity of the mean �eld approximation. Let be p the

fra
tion of infe
ted sites initially distributed randomly in the system and a the radius

of the vi
inity (πa2 = |V |). We shall add an infe
tion bubble with a radius R (see Fig.

1.6-a). A xk = −1 state in the boundary of the infe
ted 
ir
le will be
ome infe
ted if

∑

k xk(t) = (2p− 1)(πa2 − A(R)) + A(R) > 0, where A(R) is the surfa
e of the portion
of the 
ir
le inside the infe
tion bubble (see Fig. 1.6-b). Therefore, the bubble will infe
t

neighbors and will propagate into the system, if

A(R)

πa2
>

1− 2p

2(1− p)
. (1.12)

The surfa
e A(R) follows from a dire
t geometri
al 
al
ulation. In the large R/a limit,

one gets

A(R)

πa2
≈ 1

2
− a

3πR
− 2a2

9π2R2
+O(R−3), (1.13)

therefore, one 
on
ludes that the 
riti
al radius of nu
leation s
ales as

Rc

a
≈ 2(1− p)

3πp
.

Figure 1.7 shows a numeri
al study of the nu
leation radius, for various vi
inity sizes,

|V |, as a fun
tion of p. Moreover the �gure also presents the mean �eld estimation by
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an expli
it geometri
al 
al
ulation of the surfa
e A(R) and using the 
riti
al 
ondition

(1.12). One sees that the mean �eld approa
h mat
hes perfe
tly with the data in the

large |V | limit.

0.1 0.2 0.3 0.4 0.5

p0

2

4

6

8

R a

2444

144

68304

696

(a)

0.8

0

1

0.2 1

0.2

0.4

0.4

0.6

0.80.6

(b)

Figure 1.7: a) Criti
al radius of nu
leation R/a as a fun
tion of p. As expe
ted as

p → 1/2 the 
riti
al radius is zero, while as p → 0 the 
riti
al radius diverges. The

points 
orrespond to the numeri
al simulations for di�erent values of the vi
inity size:

|V | = {24, 44, 68, 144, 304, 696} as indi
ated in the �gure. b) Estimation of the lower

bound of the probability P (p) of having a 
riti
al nu
leation bubble of infe
ted states,

for |V | = 8, |V | = 20 and |V | = 68 One noti
es that this probability takes-o� around a

pre
ise value of p.

However, a question remains open: what is the probability to obtain, ab-initio a

bubble with a radius larger than Rc? This probability seems to be very small, be
ause it

is proportional to the probability to obtain πR2
c sates +1 all together, that is

Pbubble ≈ pπR
2
c = p|V |(Rc/a)2 ∼ p

|V |
4(1−p)2

9π2p2 , (1.14)

with Rc/a the fun
tion of p plotted in Fig. 1.7. Although, this probability P (p) is
quite small, it is a lower bound for the problem of Bootstrap per
olation. If, initially, a

bubble has a radius greater than Rc(p), then the system per
olates, and the nu
leation

bubble may not initially exist, but it may be built solely by the evolution, this provides

a better estimation of the probability P (p) of per
olation.
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The Q2R Cellular Automaton

2.1 The Q2R model

2.1.1 The rule

The Q2R 
ellular automaton [4℄ is a network with N ≫ 1 nodes, in whi
h ea
h node

k represents a spin with a dis
rete value (xk = −1 or xk = +1). The spins intera
t

with a neighbor V , moreover, the intera
tions 
an depend of the range of intera
tion

(one-dimensional 
ase), as display in Figure 2.1(a). For the following, we shall restri
t

the Q2R model, already introdu
ed in se
tion 1.1.3 in a two-dimensional latti
e, for the


ase of Von Neumann neighborhood, therefore, with the four 
losest neighbors (see Figure

2.1(b)).

XkX X

XX

k+1

k+n

k-1

k-n

r=k-n r=k+n

(a)

Xk

N

N

(b)

Figure 2.1: Figure (a) and (b) represent the intera
tions s
heme for one and two-

dimensional 
ases. Figure (a) shows a 
hain with a r ratio-intera
tion, and Figure (b) a

square latti
e of size N × N , with a von-Neuman neighborhood. In both 
ases, periodi


boundary 
onditions are employed.

This automaton is driven by the following two step-rule [4℄:

19
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xt+1
k = xt−1

k φ

(

∑

i∈Vk

xt
i

)

, (2.1)

where the fun
tion φ is su
h that

φ (s) =







+1 if s 6= 0

−1 if s = 0.
(2.2)

This two-step rule may be naturally re-written as a one-step rule with the aid of an

auxiliary dynami
al variable:

yt+1
k = xt

k,

whi
h when substituted into equation (2.1), be
omes

xt+1
k = ytk φ

(

∑

i∈Vk

xt
i

)

. (2.3)

Note that the reversibility of the model 
orresponds to the equivalen
e of the inverse

fun
tion φ
(
∑

i∈Vk
xt
i

)

= 1/φ
(
∑

i∈Vk
xt
i

)

, be
ause from 
onditions of the equation (2.2),

one 
an show that the equation (2.3) is equivalent

φ

(

∑

i∈Vk

xt
i

)

xt+1
k = ytk. (2.4)

Example

In the following, we will present a simple example of the evolution of a Q2R model. Let

be a latti
e of size N = 5 × 5 as displays Figure 2.2. For simpli
ity, in the latti
e there

are two 
olors: the red 
ir
les (•) 
orrespond to states with values xk = +1, and the bla
k


ir
les (•), are states with values xk = −1. Also, we examine a 
ase where the initial


on�guration at time t = 0 is the same at t+1 time, i.e., xt=0 = yt=0
, as show the Figures

2.2(a,b).

First sele
t a spin in the initial 
on�guration xt=0
, as shown in Figure 2.2(a). We

en
losed the parti
ular spin with a square, then, we sele
t the neighborhood whi
h 
orre-

sponds to the initial 
on�guration yt=0
, but for the state xt=0

k = +1. Now, if we perform
a sum over neighbors, this is φ

(
∑

i∈Vk
xt
i = 0

)

= −1, using equation (2.3), the state
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(a) x
t

k
(b) y

t

k
(
) x

t+1

k

Figure 2.2: A system of size N = 4× 4, is present as an example for the dynami
 of the

Q2R model. The states are; the symbol (•) for a state xk = 1, and the symbol (•) for a
state xk = −1 respe
tively.


hanges from xk = +1 to xk = −1 at ea
h time-step (all states are updated in par-

allel fashion). Figure 2.2(c) represents the evolution of the system, where the initial

energy E = −4 and initial magnetization M(t = 0) = 2. The �nal magnetization from

xt
to xt+1

will be M(t = 1) = 0. In this 
ase, the dynami
s of the system 
onserves the

energy and the magnetization �u
tuates during the evolution pro
ess.

2.1.2 Energy Conservation

Pomeau [5℄ showed that the following quantity, whi
h we 
all energy,

E[
{

xt, yt
}

] = −1

2

∑

〈i,k〉

xt
ky

t
i , (2.5)

is preserved under the dynami
s de�ned by the Q2R rule (2.3). The summation on equa-

tion (2.5)

∑

〈i,k〉 is over all states k together with their neighbors, i. This form is equivalent

to

∑

〈i,k〉 ≡
∑

i

∑

k∈Vi
≡∑k

∑

i∈Vk
.

In the following, we prove the energy 
onservation between the time t and t + 1. To
do that, let as 
ompute the energy di�eren
e among the time t and t+ 1 .

∆E = E[
{

xt+1, yt+1
}

]− E[
{

xt, yt
}

] (2.6)

= −1

2

∑

〈i,j〉

xt+1
i yt+1

j +
1

2

∑

〈j,i〉

xt
jy

t
i . (2.7)
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Be
ause yt+1
k = xt

k and xt+1
k = xt−1

k φ
(
∑

i∈Vk
xt
i

)

, one gets that

∆E = −1

2

∑

〈i,j〉

[

yti φ

(

∑

k∈Vi

xt
k

)

xt
j − xt

jy
t
i

]

(2.8)

∆E = −1

2

∑

〈i,j〉

xt
jy

t
i

[

φ

(

∑

k∈Vi

xt
k

)

− 1

]

≡ 0 (2.9)

We 
an see that the last equality by term is zero, be
ause, if

∑

k∈Vi
xt
k 6= 0 then, the

bra
ket is zero. On the other hand, if

∑

k∈Vi
xt
k = 0 the bra
ket does not vanish, but

the term in front

∑

〈i,j〉 x
t
j = 0 of the bra
ket 
an
els out terms. Besides, the energy is

bounded by −2N ≤ E ≤ 2N .

2.1.3 Staggered Invariants

As already suggested by [7℄, there exists a large number of period orbits, therefore it is

believed that Q2R possesses a large number of other invariants.

An example of additional 
onserved quantities, are the �staggered invariants� [32℄.

Indeed, for a square periodi
 latti
e of even size L (N = L2
), the full latti
e may be

divided into two sub-latti
es as follows: Let us denote kx and ky, the indi
es of the full-
square, then, we de�ne theW sub-latti
e by all points su
h that kx+ky is an even number,
while the B-latti
e is 
hara
terized by the 
ondition kx + ky being an odd number. (In

other words, these sub-latti
es represent the white and bla
k �elds in the 
hessboard.)

Then, we de�ne:

EW [
{

xt, yt
}

] = −1

2

∑

kx+ky even

xt
k

∑

i∈Vk

yti ,

EB[
{

xt, yt
}

] = −1

2

∑

kx+ky odd

xt
k

∑

i∈Vk

yti.

The 
onserved energy (2.5) may be re-written as E[{xt, yt}] = EW [{xt, yt}]+EB[{xt, yt}].
Further,

J [
{

xt, yt
}

] = (−1)t
(

EW [
{

xt, yt
}

]−EB[
{

xt, yt
}

]
)

, (2.10)

is also an invariant, i.e.,

J [
{

xt, yt
}

] = J [
{

xt=0, yt=0
}

].

This extra invariant, splits the sub-spa
e of 
onstant E into a sub-set of 
onstant E and


onstant J . The role of this staggered invariant in the ma
ros
opi
 behavior will be

investigated in the future.
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2.1.4 The Magnetization

Another useful and important ma
ros
opi
 observable is the magnetization M(t), that is,
the sum of the states of the latti
e for ea
h time-step,e.g.,

M(t) = M [
{

xt
}

] =
∑

k

xt
k. (2.11)

This quantity M(t) is bounded as −N ≤ M(t) ≤ N . Consequently, we 
an estimate

the standard deviation of Magnetization, 
onsidering the pla
e where the average does

not 
hange during time T , i.e.,

〈M〉 = 1

T

t=t0+T
∑

t=t0

M(t), (2.12)

σ (M) =

√

〈M2〉 − 〈M〉2. (2.13)

The parameters t0 and T are the initial and �nal times, respe
tively. Finally, the

magnetization is not 
onserved by the dynami
s, however, this global variable 
an be

identi�ed as the right order parameter [33].

2.1.5 Mean Field Approximation

To understand the global intera
tion of the system, we 
an redu
e it using mean �eld

theory. Then, assuming that we are in a permanent regime, M(t) ≈ M(t + 1) ≈ 〈M〉.
From the equation of energy (2.5) and 
onsidering a Von Neuman neighborhood, it is

possible to approximate the sum

∑

yti ≃ 4
〈M〉
N

,

therefore one obtains taht the energy may be approximated in the mean �eld limit by

E = −1

2

∑

〈i,k〉

xt
ky

t
i ≃ −2

〈M〉2
N

= −2m2N. (2.14)

Where

m ≡ 1

N
〈M〉

is the average magnetization per site a quantity that belongs to m ∈ [−1, 1].
Finally, the magnetization as a fun
tion of the energy is
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m = ±
√

− E

2N
. (2.15)

In next Se
tion 2.2.2, we shall show that in the limit of large neighbors the mean �eld

approximation be
omes a

urate.

2.2 Dynami
s of the Q2R model

2.2.1 Initial 
onditions

We have explored the evolution of the Q2R model in the long-time run and with di�erent

initial random 
onditions of type,

xt=0
k = yt=0

k = Bk(p),

where Bk(p) is:

Bk(p) =

{

+1 with probability p
−1 with probability 1− p

. (2.16)

Here, Bk(p) is a probability fun
tion that 
an take boolean values with respe
t to p; if
p = 0 then the system will have only +1 states as initial 
ondition, however, if the proba-
bility is p = 1/2 the initial 
ondition will exhibit an uniform distribution of states, i.e., an

homogeneous distribution of +1 and −1 values into the latti
e. The index k represents

independent realizations over latti
e sites. We have studied all possible pair of initial


onditions: {xt=0
k = yt=0

k } as given by equation (2.16).
First, we shall provide a brief overview of the dynami
al behaviors and statisti
al prop-

erties in the 
ase of one dimensional latti
es. Then we pro
eed with two dimensional

latti
es.

2.2.2 One-dimensional Systems

In this se
tion we shall study the one-dimensional 
ase. Take a 
hain of L = 256 sites.

Let be r the interation range, i.e., the site k intera
tions with all sites {k − r, k − 1, k +
1 . . . , k+ r}. In the present study we have 
onsidered the 
ases r = 2n, where n may take

di�erent values n = {0, 1, 2, 3, 4, 5, 6, 7}, being r = 1, r = 128 the shortest and longest

range respe
tively.

Figure 2.3 shows the evolution of M(t)/N two di�erent dynami
s related to the in-

tera
tion range for the evolution in Magnetization. We have taken the 
ase where the

range is r = 2 and the initial energy E/N = −0.382, as shown in Figure 2.3(a). Here,

the magnetization �u
tuates as ∆M/N = [0.4,−0.4], and its average is 〈M〉 /N = −0.01.
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Figure 2.3: The plot 
orresponds to the dynami
s of magnetization versus time. In (a),
the system possesses an initial energy E/N = −0.382 and a intera
tion range, r = 2. On
the other hand, (b) exhibits a 
ase where the intera
tion range is r = 16 and the initial

energy is E/N = −0.0003. In both 
ases the time evolution was t = 4× 104

On the other hand, in the 
ase where the intera
tion range is r = 16, (see Figure 2.3(b)),
the magnetization �u
tuates as ∆M/N = [−0.3, 0.2], but its average is zero.

It is important to remark the following fa
t: The dynami
s depends on an intera
tion

range as well as the energy. Figure 2.4 plot the phase diagram for the average magne-

tization per site 〈M〉 /N , as a fun
tion of the re-s
aled energy (E/rN). This fun
tion

has been normalized, with the purpouse of 
he
king 
onvergen
e for all 
urves to the

value E/rN ≈ 0. Noti
e that in the mean �eld approximation equation (2.15) be
omes

m =
√

−E/rN .

If the system takes the value r = 4 (the 
urve is represented with the symbol +), 〈M〉

onverges to an energy 
lose to E/rN ≈ −0.2. However, when we take as intera
tion

range r = 128, the 
urve 
onverges to the value E/rN = 0. In the latter 
ase, we have a

full intera
ting system. Moreover, when the latter 
ondition of full intera
tion is satis�ed,

m =
√

−E/rN is equivalent to the one obtained by applying mean �eld theory.

Therefore, the one-dimensional 
ase manifests a dynami
s, where the intera
tion does

not show phase transition. This is 
oherent with the aim of the Q2R model, that is, a

model equivalent to the one-dimensional Ising model.

2.2.3 Two-dimensional Systems

Now, we 
onsider the 
ase of a two dimensional periodi
 latti
e of size N = 256 × 256.
Moreover, we will develop extensive numeri
al simulations in the long-time run, with the

idea of generating the evolution of states as a fun
tion of the initial energy. Also, as it was

shown in a previous arti
le [9℄, the Q2R 
ellular automata exhibits an important feature,
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Figure 2.4: The average magnetization 〈M〉 /N as a fun
tion of E/rN . Here, we have

presented eight di�erent intera
tion range, from r = 1 to r = 128. The 
ontinuous

line represents the result obtained by 
al
ulating using 
al
ulation of mean �eld, m =
√

−E/rN .

namely the existen
e of a phase transitions, for given a spe
i�
 energy, as it o

urs in the

two-dimensional Ising model.

2.2.4 Ferromagneti
 and Paramagneti
 Behaviors

We have observed in the �rst pla
e that with energies lower than a 
riti
al energy E ≪ Ec

(whi
h is equal to Ec/N = −
√
2 ), the system will exhibit a dynami
s 
alled ferromag-

neti
 behavior. This behavior 
orresponds to a 
ase where all the spins have a pre-

ferred orientation, whi
h may be +1 or −1. To be more spe
i�
, if we take an energy

equal to E/N = −1.62, we 
an observe (Figure 2.5(a)) the behavior of magnetization

as fun
tion of time. This magnetization exhibits a �u
tuating set of values in the range

∆M/N = [0.870, 0.895].

For this energy, the 
enter of distribution is lo
ated 
lose to the average 〈M〉 ≈ 0.88.
However, in the a

ompanying (in Figure 2.5(b)) we 
an see the distribution fun
tion, in

semi-log s
ale, showing that the distribution is not Gaussian.

On the other hand, when E ≫ Ec, the system a
quires a paramagneti
 behavior.

This type of behavior 
orresponds to a homogeneous distribution of spins, i.e., there is no

preferen
e spin orientation. In Figure 2.6(a), we show the evolution of the magnetization

when the initial energy is E/N = −0.07. This, is di�erent to the paramagneti
 
ase,
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Figure 2.5: (a) Represents the dynami
s of the magnetization versus time, for a system

with an energy E/N = −1.62. In this 
ase, the system exhibit a ferromagneti
 behavior.

(b) Represents the probability density distribution of the magnetization. The inset plot

the PDF in log s
ale.

be
ause the dynami
s �u
tuates around zero: ∆M/N = [−0.015, 0.015], being a behavior
without large �u
tuations. Moreover, Figure 2.6(b) represents the evolution of the pdf

of 〈M〉 /N , whi
h exhibits an average equals to 〈M〉 /N = 0. In su
h 
ase, the system

exhibits a similar number of spins +1 and −1. Also, in this 
ase, the histogram shows a

well de�ned Gaussian distribution.

2.2.5 Phase Transition

The Q2R model exhibits a phase transition for a 
riti
al energy, Ec. This value is 
lose

to the 
riti
al energy of the Ising model Ec/N = −
√
2 [31, 34℄.

As we 
an observe in Figure 2.7(a), we 
an distinguish three di�erent regimes, when

starting with on initial energy E/N = −1.416. The �rst one, shows a �u
tuation for

M(t)/N around the value 〈M〉 /N = 0.55. Analogously, for the se
ond and third regimes,

the 
orresponding �u
tuations are around 〈M〉 /N = 0 and 〈M〉 /N = −0.55 respe
tively.
Finally, the �u
tuation will return around zero.

We 
an see a spontaneous 
hange in the behavior of the magnetization from higher

to lower values. However, with an initial 
ondition su
h that M < 0 (and E ≈ Ec), the
system will evolve from negative to positive values of 〈M〉 /N .
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Figure 2.6: (a) Represents the dynami
s of the magnetization versus time, for a system

with an energy E/N = −0.07. In this 
ase, the system exhibits a paramagneti
 behavior.

(b) Represents the PDF of magnetization. The inset show the PDF in log s
ale.

In this 
ontext, the distribution for the 
ase of an energy E/N = −1.416 (Figure

2.7(b)), the pdf of magnetization shows the existen
e of three values where the distri-

bution is 
on
entrated, and whi
h 
orresponds to the evolution of the magnetization,

〈M〉 /N = 0.55, 〈M〉 /N = 0 and 〈M〉 /N = −0.55 respe
tively. Also, there is a higher


on
entration around the average 〈M〉 /N = 0, be
ause the system will remain a longer

time in those regions, before jumping to a di�erent magnetization value.

However, this shows that if the system is taking values di�erent from the 
riti
al

energy, there will be 
onvergen
e to a paramagneti
 or ferromagneti
 behavior, as was

previously shown. On the other hand, it is interesting how the Q2R 
ellular automata

develops a very de�ned representation of a 
hange of state similar to that the one whi
h

generates the 
lassi
 Ising model [2℄.

Consequently, from the evolution of the magnetization, it is possible to make a sta-

tisti
al des
ription for the average of magnetization 〈M〉 (see Eq. 2.12), as well as, for

the standard deviation σ (M(t)) (see Eq. 2.13), versus the initial energy E/N . Then,

the phase diagram of Figure 2.8(a) shows three spe
i�
 behaviors, a

ording to a given

energy. In this 
ontext, starting from the lowest energy E/N = −2 (Ferromagneti
 state)

the 
urve begins to fall (or to rise) gently until it rea
hes a 
riti
al energy Ec, where, the

system exhibits a metastable behavior mean phase transition. Then, the 
urve 
onverges

qui
kly to a zero value respe
t to the average magnetization (Paramagneti
 state). More-

over, Figure 2.8(b) displays the standard deviation versus the Energy. Here, we 
an see
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Figure 2.7: Plots (a) and (c) show the evolution of the magnetization for the 
ase where

their initial energies are E/N = −1.416 and E/N = −1.426 respe
tively. We 
an see that

the magnetization jumps between states. In both 
ases, Figure (b) and (d) display the

pdf for the respe
tive magnetizations.

how the system exhibits a greater �u
tuations around the 
riti
al energy Ec/N value.

During this resear
h, we have observed in Q2R model a behavior whi
h depends on

the spe
i�
 region of energy 
onsidered. Moreover, our analysis has alway been performed

from a ma
ros
opi
 point of view in terms of the observable of interest (Magnetization).

However, as seen from a mi
ros
opi
 point of view, states 
an evolve into very spe
i�


patterns.
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Figure 2.8: Phase diagram of average magnetization 〈M〉 /N versus the Energy E/N . One


an see, regions where the system shows a ferromagneti
 and paramagneti
 behavior, for

a given initial Energy, as well as, the 
riti
al regime. Figure (b) represents the standard

deviation of magnetization versus the energy. Clearly, we 
an see that the system exhibit

a maximum value when the energies are 
lose to the 
riti
al energy E/N = −
√
2. The


ontinuous line represents the well known statisti
al me
hani
s 
al
ulation for the Ising

model M/N ≈ 25/16(
√
2 + E/N)1/8 (see below).

When the dynami
s shows ferromagneti
 behavior, there will be a preferred spin ori-

entation, as 
an be seen in Figure 2.9(a). The latti
e only exhibits a small number of

−1 spins and a big number of +1 spins. Clearly, this shows that during the evolution

some states may 
hange. However, when the initial energy gives rise to a paramagneti


pattern, in the latti
e there will be an equal amount +1 and −1 states whi
h are randomly

distributed (Figure 2.9(b)).

Near the transition the dynami
s, i.e., E ≈ Ec, the patterns display pat
hes, with +1
and −1 states. Here, the pat
hes are spins 
on
entration whi
h 
an keep a state on a �nite

time, and then 
hange to another state (see Figure 2.9(
)). Also, there will be zones where

the average magnetization is zero, be
ause the spins are into a 
hessboard-like pattern.

2.2.6 Exa
t results from the Ising model in statisti
al me
hani
s

Finally, to illustrate the 
onne
tion with the Ising model. One 
an get a relation between

the average energy and the average magnetization from the aid of the well-know formulas

by Onsager [31℄ and Yang [34℄. Similarly, we 
an obtain a relation between the magneti-
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(a) (b) (
)

Figure 2.9: Snapshots of the patterns for three di�erent energies. In Figure (a) 
orrespond

a 
ase where the system exhibit a paramagneti
 behavior (E/N = −1.62), Figure (b) is
a the 
ase of a ferromagneti
 behavior (E/N = −0.07). Finally, in Figure (
) shows a

pattern where the initial energy is 
lose to 
riti
al energy (E/N = −1.416). The 
olor

map, is the following: yellow represents the boolean variable at +1 and blue means that

the boolean variable is at −1.

zation �u
tuations that 
orresponds to the zero-�eld magneti
 sus
eptibility as a fun
tion

of energy following the work of Wu et al. [35℄.

Be
ause all these 
al
ulations are done in the 
anoni
al ensemble, we shall 
ompare the

ma
ros
opi
 observable in terms of the inverse of the temperature, β. The mean internal

energy as a fun
tion of β reads

E(β)

N
= − coth(2β)

(

1 + κ1
2

π

∫ π

0

dt
√

1− κ2 sin2 t

)

, (2.17)

where κ and κ1 are:

κ = 2
sinh(2β)

cosh2(2β)
κ1 = 2 tanh2(2β)− 1. (2.18)

The transition point is 
hara
terized by the 
ondition sinh(2βc) = 1, that 
orresponds
to the 
riti
al energy Ec/N = −

√
2.

The resulting magnetization be
ause [34℄

M(β)

N
=

(

1− 1

sinh4(2β)

)1/8

, (2.19)
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and, �nally, the magneti
 �u
tuations

∆M2 =
〈

M2
〉

− 〈M〉2

are related to the magneti
 sus
eptibility via

χ = β
(〈

M2
〉

− 〈M〉2
)

.

On the other hand the magneti
 sus
eptibility has been reported to be [35℄

χ± = β
(

c0± |1− β/βc|−7/4 + c1± |1− β/βc|−3/4
)

+ . . . , (2.20)

where the ± sign 
orrespond to the behavior for β > βc or β < βc. The numeri
al values

for the 
onstants are:

c0+ = 0.9625817322
c0− = 0.0255369719
c1+ = 0.0749881538
c1− = −0.0019894107

From the numeri
al results obtained in this se
tion, we have shown 
learly the 
onne
tion

of the Q2R model with the Ising model. From this set of equations that shows the

behaviors of the Ising model. Moreover, the theoreti
al 
urves Magnetization versus

Energy (see Fig.2.8(a)), and magneti
 sus
eptibility versus Energy (see Fig.2.8(b)), this

veri�es that the model is a good example for displays the dynami
s between spins, and

also the dynami
s 
an develop a phase transition when the energy takes the 
riti
al value.



Chapter 3

The Phase Spa
e 
hara
terization

3.1 Generalities

The phase spa
e of the Q2R system of N sites possesses 22N states, whi
h is partitioned

in di�erent sub-spa
es of 
onstant energy, whi
h themselves are partitioned into a large

amount of smaller subspa
es of periodi
 orbits or �xed points. Noti
e that, be
ause the

system is 
onservative, there are neither attra
tive nor repulsive limit sets, all orbits are

�xed points or 
y
les.

This feature of the phase spa
e is s
hematized in Fig. 3.1, where the 
onstant energy

subspa
e shares in prin
iple many 
y
les and �xed points. An arbitrary initial 
ondition

of energy E falls into one of these 
y
les, and it runs until it 
omes ba
k to the initial


on�guration after a time T , whi
h 
ould be exponentially long and it displays a 
omplex

behavior.

Figure 3.1: S
heme of a sub-spa
e of 
onstant energy 
omposed by a number of 
y
les

and �xed points.

In the following se
tion we shall 
hara
terize the phase spa
e of the Q2R automaton.

33
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3.2 Exa
t phase spa
e 
al
ulation for very small latti
es

3.2.1 Phase spa
e 2× 2

Let us 
onsider, in the �rst pla
e, the simplest version of a two-dimensional Q2R au-

tomata, this is, the periodi
 of a latti
e of 2 × 2. As well shall see, the dynami
s is

extremely simple and then, it is possible to perform manually all 
al
ulations.

The phase spa
e is de�ned by a hyper
ube of dimension 8, e.g, 
omposed of 28 = 256
verti
es whi
h represent the full set possible 
on�gurations. As shown in Figure 3.2,

the energy takes only �ve possible values, E = {−8,−4, 0,+4,+8}. However, the original
phase spa
e is not only partitioned by the energy 
onservation rule, but by a large amount

of small 
y
les with di�erent periods.

This fa
t suggests that it is possible de�ne unknown invariants that 
onstrain the

dynami
s that rules in limit 
y
les. More pre
isely, for E = 8 there are 4 
on�gurations,

for an energy E = −4 there are 48 
on�gurations 
onsisting in 12 
y
les of period 4,

similarly for E = +4 whi
h 
onstant energy set also 
onsists of 12 
y
les of 4 period.

Finally the 
ase E = 0 
onsists on 152 
on�gurations divided in 36 
y
les of 4 period,

and 4 
y
les of 2 period. The full periodi
 stru
ture of ea
h set of energy is summarized

in Table 3.1.

Figure 3.2: Representation of the �ve subspa
es whi
h 
orresponds to a system N = 2×2.
Moreover, the �ve di�erent subspa
es of energies E = {−8,−4, 0,+4,+8}. Ea
h subspa
e

shows a number of periods whi
h depends on the parti
ular energy of su
h subspa
e.

3.2.2 Exa
t Phase Spa
e for the N = 4× 4 
ase.

The phase spa
e for N = 4×4 the system exhibits 232 states and a phase spa
e of dimen-

sion 32. The full distribution of states for the exa
t phase spa
e for a N = 4× 4 system
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Period

E n(E) 1 2 4

−8 4 2 2 0

−4 48 0 0 48

0 152 0 8 144

4 48 0 0 48

8 4 2 2 0

Table 3.1: The distribution of periodi
 orbits for all energies in the 
ase of Q2R in a 2×2
periodi
 latti
e. The �rst 
olumn indi
ates the energy E, the se
ond one, n(E), shows
the total number of states with an energy E. The following 
olumns indi
ates the total

number of states of period T .

is presented on the next tables .

In the �rst 
olumn of the table 3.2, this present the values of energy. The se
ond


olumn 
orrespond to number of states for energy. On the other hand, from the third to

last 
olumn these present the periods for ea
h values of energy. Finally, the tables 3.3

and 3.4 shows the 
ontinuity of the phase spa
e.

As it 
an be seen form the data, the Q2R system for 4 × 4 possesses a number of 29
periods, moreover, this has �xed points for all the energies. However, the 
y
le longer

is T = 1080 and only 
orrespond for the energies E = −2 and E = +2. The full data

maybe summarized in a probability density of states with a given energy and period:

ρ(E, T ) that is plotted in Figure 3.3(a). An important point is the symmetry on the

phase spa
e, be
ause we have the same quantity of states and periods, for positive and

negative energies. On the other hand, in Figure 3.3(b) we have taken some periods, where


learly the phase spa
e, develop a distribution symmetri
 around of the energies.

Even for small systems one noti
es that the number and the period of 
y
les varies

from energy to energy. However, the distribution of periods for a given energy presents

some robust behaviors that may be studied similarly, but it takes more lengthly pro
ess-

ing time be
ause one needs to run the states and wait the 
omplete 
y
les.

Let be n(T,E) the total number of 
y
les of period T and energy E, of a system with

N sites ruled by Q2R, then one de�nes the probability density fun
tion

ρ(E, T ) =
T × n(T,E)

22N
≈ e−α|E|. (3.1)

By the ratio of total number of states of period T over the total number of states that

satis�es the following normalization rules:

Ω(E) = 22N
∑Tmax(E)

T=1 ρ(E, T ) and

∑2N
E=−2N

∑Tmax(E)
T=1 ρ(E, T ) = 1
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Period

E n(E) 1 2 3 4 5 6 8 9 10 12 18

-32 4 2 2 0 0 0 0 0 0 0 0 0

-28 128 0 128 0 0 0 0 0 0 0 0 0

-26 256 0 256 0 0 0 0 0 0 0 0 0

-24 2720 32 1344 0 768 0 576 0 0 0 0 0

-22 11008 0 4608 0 1024 0 1536 0 0 3840 0 0

-20 57984 64 9792 0 13568 0 11520 9216 0 0 9216 0

-18 219136 0 19968 0 44032 0 48384 0 0 61440 15360 16128

-16 911088 88 26920 144 140528 0 131952 171776 0 122880 220032 0

-14 3244032 0 35328 0 285696 0 380160 294912 0 168960 777216 274176

-12 11734400 128 51712 384 688128 960 696192 1688576 0 1166400 3240960 516096

-10 38121728 0 66048 0 1323520 0 1362432 2547712 0 65280 8871936 2128896

-8 111191136 32 89152 576 3305024 0 2112000 10482688 0 245760 22628736 4644864

-6 264889088 0 96512 0 4457472 0 2700288 9093120 0 460800 51004416 6773760

-4 511430528 128 90112 1344 4737280 0 4198080 53696512 4032 368640 96278016 32251968

-2 763062272 0 107520 0 8868864 0 3188736 16793600 0 230400 138407424 6580224

0 885216280 208 136376 0 21223312 0 5621760 103893504 0 2334720 144804096 56254464

2 763062272 0 107520 0 8868864 0 3188736 16793600 0 230400 138407424 6580224

4 511430528 128 90112 1344 4737280 0 4198080 53696512 4032 368640 96278016 32251968

6 264889088 0 96512 0 4457472 0 2700288 9093120 0 460800 51004416 6773760

8 111191136 32 89152 576 3305024 0 2112000 10482688 0 245760 22628736 4644864

10 38121728 0 66048 0 1323520 0 1362432 2547712 0 65280 8871936 2128896

12 11734400 128 51712 384 688128 960 696192 1688576 0 1166400 3240960 516096

14 3244032 0 35328 0 285696 0 380160 294912 0 168960 777216 274176

16 911088 88 26920 144 140528 0 131952 171776 0 122880 220032 0

18 219136 0 19968 0 44032 0 48384 0 0 61440 15360 16128

20 57984 64 9792 0 13568 0 11520 9216 0 0 9216 0

22 11008 0 4608 0 1024 0 1536 0 0 3840 0 0

24 2720 32 1344 0 768 0 576 0 0 0 0 0

26 256 0 256 0 0 0 0 0 0 0 0 0

28 128 0 128 0 0 0 0 0 0 0 0 0

32 4 2 2 0 0 0 0 0 0 0 0 0

Table 3.2: Number distribution of the states as a fun
tion of E and T (Part 1), for the


ase of 4× 4 system size.

Here, Ω(E) is the total number of states, this distribution of states is not known for this

system, but it de
ays exponentially in the energy in the tails.

3.3 The evolution of states in 
on�guration spa
e

3.3.1 Sensitivity to initial 
onditions

The sensitivity to initial 
onditions of Q2R has been dis
ussed previously in Ref. [9℄. In

fa
t, when starting from two distin
t initial 
onditions, whi
h share the same energy and

J , they will evolve along two di�erent paths. As the distan
e in phase spa
e is bounded,

these two 
y
les will diverge in a non-exponential way. However, the separation growth

between them is fast enough so as to be 
ompletely analogous with the 
on
ept of sensi-

tivity to initial 
onditions.
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Period

E 20 24 27 30 36 40 54 60 72

-32 0 0 0 0 0 0 0 0

-28 0 0 0 0 0 0 0 0 0

-26 0 0 0 0 0 0 0 0 0

-24 0 0 0 0 0 0 0 0 0

-22 0 0 0 0 0 0 0 0 0

-20 0 4608 0 0 0 0 0 0 0

-18 0 0 0 0 0 0 13824 0 0

-16 7680 73728 0 0 0 15360 0 0 0

-14 368640 147456 0 276480 0 0 235008 0 0

-12 614400 1645056 0 737280 0 245760 442368 0 0

-10 860160 3538944 0 1105920 1548288 4915200 1824768 4423680 0

-8 2549760 29177856 0 2580480 2064384 2150400 3981312 7925760 0

-6 13140480 42713088 0 0 22708224 21995520 5806080 9768960 27869184

-4 2826240 90584064 3456 2580480 39223296 29245440 53523072 18432000 0

-2 4423680 104472576 0 1382400 89510400 11304960 5640192 24330240 76898304

0 21427200 107237376 0 1474560 74317824 133048320 99975168 16588800 0

2 4423680 104472576 0 1382400 89510400 11304960 5640192 24330240 76898304

4 2826240 90584064 3456 2580480 39223296 29245440 53523072 18432000 0

6 13140480 42713088 0 0 22708224 21995520 5806080 9768960 27869184

8 2549760 29177856 0 2580480 2064384 2150400 3981312 7925760 0

10 860160 3538944 0 1105920 1548288 4915200 1824768 4423680 0

12 614400 1645056 0 737280 0 245760 442368 0 0

14 368640 147456 0 276480 0 0 235008 0 0

16 7680 73728 0 0 0 15360 0 0 0

18 0 0 0 0 0 0 13824 0 0

20 0 4608 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0

Table 3.3: Number distribution of the states as a fun
tion of E and T (Part 2), for the


ase of 4× 4 system size.

To perform this study we require two 
lose enough initial 
on�gurations. A �rst initial


on�guration, {x, y}t=0
, is arbitrarily 
hosen. The se
ond one, is built by swapping a single

site k̄ in the previous 
on�guration. This site is randomly sele
ted su
h that the average

magnetization due to its neighbors is zero (that is

∑

i∈Vk̄
xi = 0 or

∑

i∈Vk̄
yi = 0). In this

way, both initial 
on�gurations have the same energy. Finally, running independently

both initial 
on�gurations, a separation distan
e between both paths 
an be measured by

the equation.

dH(t) =

N
∑

k=1

(

|xt
k − x̄t

k|+ |ytk − ȳtk|
)

,

with {x, y}t and {x̄, ȳ}t denoting two di�erent sequen
es belonging to two di�erent


y
les (see Figure 3.4). It 
an numeri
ally be shown that dH(t) grows approximately as
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Period

E 90 108 120 180 216 270 360 540 1080

-32 0 0 0 0 0 0 0 0 0

-28 0 0 0 0 0 0 0 0 0

-26 0 0 0 0 0 0 0 0 0

-24 0 0 0 0 0 0 0 0 0

-22 0 0 0 0 0 0 0 0 0

-20 0 0 0 0 0 0 0 0 0

-18 0 0 0 0 0 0 0 0 0

-16 0 0 0 0 0 0 0 0 0

-14 0 0 0 0 0 0 0 0 0

-12 0 0 0 0 0 0 0 0 0

-10 0 1327104 2211840 0 0 0 0 0 0

-8 7741440 1769472 1105920 0 0 6635520 0 0 0

-6 0 19464192 2949120 0 23887872 0 0 0 0

-4 7741440 33619968 35389440 0 0 6635520 0 0 0

-2 0 76723200 42024960 15482880 65912832 0 30965760 13271040 26542080

0 0 63700992 33177600 0 0 0 0 0 0

2 0 76723200 42024960 15482880 65912832 0 30965760 13271040 26542080

4 7741440 33619968 35389440 0 0 6635520 0 0 0

6 0 19464192 2949120 0 23887872 0 0 0 0

8 7741440 1769472 1105920 0 0 6635520 0 0 0

10 0 1327104 2211840 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0

Table 3.4: Number distribution of the states as a fun
tion of E and T (Part 3), for the


ase of 4× 4 system size.

t2 (see Ref. [9℄ for details).

3.3.2 Levy �ight stru
ture

The Hamming distan
e is a parameter that 
an be used in order to understand the dy-

nami
s of the states in the hyper
ube. In the 
ase N = 2×2, Table 3.1 shows the number
of states at a spe
i�
 energy and period, but also, the distan
e between two 
onse
utive

time steps {xt, yt} and {xt+1, yt+1}, until a 
y
le is 
ompleted.

dH
[

{xt, yt}, {xt+1, yt+1}
]

=
1

4N

∑

k

(

|xt+1
k − xt

k|+ |yt+1
k − ytk|

)

. (3.2)

The evolution of the distan
e may 
hange respe
t to the energy and initial 
on�gu-

ration. For example, when the energy is E = −4, this exhibit 16 states whi
h evolve at
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Figure 3.3: Figure (a) logarithm of the probability density fun
tion versus the energy E
and Period T , here, the plot exhibits all the states for the 
ase 4× 4. In Figure (b) shows

some various periods T = {1, 2, 3, 4, 5, 6, 8, 10, 12} versus the energy E.
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Figure 3.4: These plots manifest the sensibility to the initial 
ondition for a system of size

N = 256 × 256. The Hamming distan
e between the two evolutions xt
k and x′t

k in time

few initial 
onditions at the same energy.

a �xed distan
e dH = 4, similar to random walk like behaviour. However, there are 32

states where its distan
e 
hanges at ea
h time step, i.e., the states jumps from a state to

another making sometimes large jumps and sometimes short jump. This behavior, similar

to a Levy �ight, indi
ates a possible anomaly di�usion [36, 37, 38, 39, 40, 41℄.
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3.3.3 Con�guration spa
e for a system 256× 256

It 
an be observed that the behavior of almost any initial state may be 
hara
terized in


on�guration spa
e by means of an analogy with a random walk (or a variation of this

pro
ess), more pre
isely when we 
ompute the distan
e among two 
onse
utive steps.

Then, from the distan
e (3.2) is possible determine: if the jump step dH(t) has a �xed

length, we shall say that this 
orresponds to the 
ase of a random walk [42℄, thus the state

di�uses in the phase spa
e. However, if the step distan
e, dH(t) is di�erent from one step

to another, then, the behavior will be that of a Lévy �ight [43℄.

We performed a large number of simulations for di�erent energies, in a system of size

256 × 256 in order to 
he
k the behavior of the sampling of the quantity E/N , only for

initial 
on�gurations of the form {x, y} and {−x,−y}, su
h that their values are in the

range −2 ≤ E/N ≤ 0.

In �gure 3.5(a) one sees the evolution of dH(t) vs. time. One noti
es three distin
t

behaviors: a �rst region 
orresponds to the 
ase E ≪ Ec , here, the evolution of the dis-

tan
e dH(t) behaves as a random walk, that is, ea
h step possesses almost a �xed length.

Figure 3.5(
) quanti�es this fa
t showing that for E/N ≤ −1.54 the pdf of the distan
es

is well 
entered around 〈dH(t)〉 ≈ 0.025− 0.07, in this 
ase its evolution always is respe
t

to the 
loser nodes in the hyper
ube. For larger energies E/N ≥ −1.26 the pdf is peaked
and 
entered at 〈dH(t)〉 ≈ 0.5, for this energy the evolution �u
tuates around a quite

large mean distan
e, in this 
ase the states move from a node up to an extremely faraway

node in the 2N dimensional hyper
ube.

Finally, in the third 
ase, that is whenever the energy is 
lose of the 
riti
al energy

E ≈ Ec(−1.54 ≤ E/N ≤ −1.26) the pdf of the distan
es is spread among a wider region

〈dH(t)〉 ≈ 0.2 − 0.3, the motion of the states in the phase spa
e looks similar to a Lévy

�ight, that is the system may jump from one pla
e to another in the hyper
ube and the

distan
e maybe either small or large (see �gure 3.5(b)).

An important 
onsequen
e is the ampli�
ation of the �u
tuations of the distan
e dH(t)
near E ≈ Ec. Figure 3.5(
) shows a plot of the standard deviation of the �u
tuations of

dH(t) as a fun
tion of the energy for the system of size N = 256×256. These �u
tuations
indi
ate a 
riti
al behavior around the 
riti
al energyEc = −

√
2. This ampli�
ation of the

�u
tuations of dH(t) 
on�rms the previous qualitative behavior in the three mentioned

regions. Large �u
tuations are 
onsistent with a Lévy �ight, however, small �u
tuations

suggest a random walk-like behavior.
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Figure 3.5: (a) Plot of the Hamming distan
e between two 
onse
utive steps: dH(t)
versus time, for a system of size N = 256 × 256. We 
an remark the fa
t that di�erent

values of energy, E/N , generate roughly three di�erent regions. (b) The probability

density fun
tion (PDF), for these three di�erent regimes. (
) the standard deviation of

the Hamming distan
e σ(dH(t)) versus the energy.
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Chapter 4

Coarse-Graining and Master Equation

4.1 General S
ope

Though the Q2R model is quite simple its dynami
s is usually very ri
h as it has been

in previous 
hapter. Moreover, this 
onservative and reversible system appears to be-

have as a typi
al ma
ros
opi
 system, as the number of degrees of freedom in
reases,

showing, among others, a typi
al irreversible behavior, sensitivity to initial 
onditions, a

kind of mixing, and it exhibits a phase transition. It is believed that this Q2R is a good

representation of an Ising model in thermodynami
al equilibrium.

As already said, for a given energy the 
onstant energy set with Ω(E) states is parti-
tioned in di�erent sub-spa
es 
omposed by periodi
 orbits or �xed points. An arbitrary

initial 
ondition of energy E falls into one of these 
y
les, and it runs until it 
omes

ba
k to the initial 
on�guration after a time T , whi
h 
ould be exponentially long and it

displays a 
omplex behavior. More important, the probability that an initial 
ondition

exhibits su
h a 
omplex behavior is �nite [44℄. Moreover, Q2R manifests sensitivity to

initial 
onditions, that is, if one starts with two distin
t, but 
lose, initial 
onditions, then,

they will evolve into very di�erent 
y
les as time evolves [9℄. In some sense, an initial

state explores vastly the phase spa
e justifying the grounds of statisti
al physi
s.

In 
on
lusion, the overall pi
ture is : although for a �nite size system the deterministi


automata Q2R possesses periodi
 dynami
s so it is not ergodi
, there is a huge number of

initial 
onditions that explore vastly the 
on�guration spa
e (this is parti
ularly remark-

able for initial 
onditions of random stru
ture). Therefore, one expe
ts that a master

equation approa
h may be su

essful.

4.1.1 General formalism

Given a set of initial 
onditions with a �xed energy E, the probability distribution

̺Et ({x, y}) evolves following a Perron-Frobenius like-equation

̺Et+1 = LE̺Et (4.1)

43
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Figure 4.1: Cartoon of a 
y
le of period T , for whi
h the 
y
le is 
omposed of T states.

whi
h, in prin
iple, 
an be 
omputed by using the mi
ros
opi
 evolution rule (2.3). In-

deed LE
is easy to build: if the state {x, y}i at time t evolves into {x, y}k, at time t + 1,

then one sets the (i, k) 
omponents to 1, that is LE
ik = 1. Che
king all available elements,

Ω(E), for a given energy we 
an build the huge, Ω(E)× Ω(E), linear operator, LE
. This

matrix possesses a large number of blo
ks and zeroes revealing the existen
e of a large

number of 
y
les in the Q2R model (In some sense, LE
is a kind of adja
en
y matrix of

a graph, the graph being the total number of existing 
y
les for a given energy).

However, this des
ription is impra
ti
al be
ause of the typi
al magnitude of Ω(E).
Therefore, the full phase spa
e is redu
ed to a des
ription using gross or ma
ros
opi


variables, namely the total magnetization (2.11), instead of mi
ros
opi
 variables.

We pro
eed with a 
oarse-graining s
heme as in Ref. [12℄. Let's de�ne a non invertible

proje
tion operator, Π, that maps the original distribution fun
tion ̺Et into ρt(M)

ρt(M) = Π · ̺Et ({x, y}) =
∑

states with (
∑

k xk=M)

̺Et .

Formally, ̺Et may be seen as a ve
tor of dimension Ω(E), and ρt as a ve
tor of dimen-

sionN+1, indexed byM , hen
e Π is formally a matrix withN+1 rows and Ω(E) 
olumns.

Applying the proje
tor operator on the Perron-Frobenius equation (4.1) one gets

ρt(M) = Π · ̺Et = Π · LE · ̺Et−1 = Π · (LE)t · ̺E0 , (4.2)

where ̺E0 ({x, y}) is an initial distribution.

As explained in detail in Ref. [12℄, in general, it is not possible to redu
e the original

Perron-Frobenius equation into a self-
ontained master equation.
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Following, Ni
olis et al. [12, 13℄ we take an initial redu
ed distribution, ̺E0 ({x, y}), as
a 
ombination of step fun
tions in the aforementioned intervals:

̺E0 ({x, y}) =
∑

M

αMϕM({x, y}). (4.3)

In equation (4.3) we have de�ned

ϕM({x, y}) =







1 if
∑

k xk = M

0 if
∑

k xk 6= M
.

The linear operator ϕ may be seen as a matrix with N + 1 rows and Ω(E) 
olumns (a

state {x, y} whi
h belongs to a 
olumn ve
tor of dimension Ω(E) and whi
h maps onto a

single magnetization whi
h may take N + 1 di�erent values).

This is the 
entral assumption of the 
oarse-graining approximation. States with the

same magnetization are assumed to be uniformly distributed into the original phase spa
e

(see the Ansatz (4.3)).

The 
oe�
ients αM may be obtained by inverting (4.3) [12℄. The result is

αM =
∑

states

̺E0 ({x, y})ϕM({x, y}).

Therefore, αM is pre
isely theM-th 
omponent for the 
oarse-grained distribution ρ0(M) =
Π̺E0 .

Thus, for this spe
ial type of initial distributions one has

̺E0 ({x, y}) =
∑

M

ρ0(M)ϕM ({x, y}) = ϕ† · ρ0.

Here, in the last equality, we have written expli
itly ρ0 as a N +1 dimensional ve
tor

and ϕ†
as a Ω(E) × (N + 1) matrix. Therefore, the Perron-Frobenius equation (4.2)

be
omes

ρt = Π · (LE)t · ϕ† · ρ0. (4.4)

Noti
e that ϕ† ·Π = I is the Ω(E)× Ω(E) identity matrix.

Therefore, de�ning the (N + 1)× (N + 1) matrix W by

W = Π · LE · ϕ†. (4.5)
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one is able to write the �nal redu
ed Perron-Frobenius equation, whi
h will be of the form

ρt+1 = W · ρt. (4.6)

The linear operator, W, a
ts only in the subspa
e of 
onstant E, but is spanned over

arbitrary values of magnetization, and at the same time the redu
ed density ρ is a ve
tor

with its 
omponents indexed by M .

As the original Perron-Frobenius equation, W depends expli
itly on the Q2R rule

through LE
therefore, in prin
iple, is possible to 
ompute it expli
itly. However, in pra
-

ti
e, be
ause of the 
omplex and unknown stru
ture of LE
(in parti
ular be
ause of the

existen
e of a myriad of di�erent periods for a given E) it is not a realisti
 task, be
ause,
the matrix W 
ould be quite large.

However, the matrix W 
an be further redu
ed following a se
ond 
oarse-graining

pro
ess. This partition is de�ned through a �nite number of sets of non overlapping inter-

vals: I1 = [−N,M1), I2 = [M1,M2), . . . IK−1 = [MK−2, MK−1), IK = [MK−1, N ]. (The

previous 
ase (4.6) 
orresponds to K = N + 1.)

We 
an pro
eed as previously, de�ning a se
ond non-invertible proje
tion operator, π,
whi
h maps the redu
ed distribution fun
tion ρt into a dis
rete and shorter 
olumn ve
tor

of dimension K: ft = (f1, f2, . . . fK). Finally, we obtain a 
oarse-grained master equation

for the probability distribution [12, 13℄:

ft+1 = Ŵ · ft. (4.7)

Here Ŵ is named the transition probability matrix.

Important features of the master equation (4.7) are:

1. The probability ve
tor ft should be positive and normalizable. Let 1 = (1, 1, . . . 1)
be a K-dimensional ve
tor, then we set 1 · ft = 1. More important, be
ause of

normalization,

∑K
i=1wik = 1, one has Ŵ † · 1 = 1. This implies that the probability

is 
onserved under the evolution 1 · ft+1 = 1 · Ŵft = 1 · ft = 1.

2. The Perron-Frobenius equation 
ould be solved exa
tly, provided is given an initial

given distribution f0: ft = Ŵ tf0.

3. Be
ause of the Frobenius theorem, there exists an eigenvalue whi
h is one, λ1 = 1,
while other eigenvalues fall inside the unitary 
ir
le |λi| < 1 for i > 1. Let feq be

the Eigenve
tor asso
iated with the Eigenvalue λ1 = 1; this is an invariant ve
tor
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feq = Ŵfeq.

4. In what it follows, we denote by χ(i)
the eigenve
tors of Ŵ 
orresponding to λi.

Naturally one has χ(1) ≡ feq.

5. The existen
e of an equilibrium state: limt→∞ ft = feq.

6. Be
ause all elements in the W -matrix are positive, any non negative initial distri-

bution remains non negative.

4.1.2 Expli
it 
al
ulation for the transition probability matrix

Ŵ

As already mentioned, to determine empiri
ally the matri
es W or Ŵ we 
annot use

(4.5). Instead, we shall start with a magnetization sequen
e {· · · ,Mt−1,Mt,Mt+1, · · · }
obtained from dire
t numeri
al simulations. This sequen
e is always �nite but it 
ould be

exponentially long (so in pra
ti
e in�nite).

The transition probability matrix Ŵ may be found from the probability density fun
-

tions at time t and t+1. The elements of the matrix are given by the following 
onditional

probabilities (Here we use a di�erent notation than Ref. [12℄):

wik = P (Mt+1 ∈ Ii|Mt ∈ Ik) =
P (Mt+1 ∈ Ii ∩Mt ∈ Ik)

P (Mt ∈ Ik)
.

Here Mt belongs to the interval Ik at time t, and Mt+1 belongs to the interval Ii at t+ 1.
Finally, the matrix Ŵ does not, depend on time, whi
h is a feature of a Markov pro
ess.

The 
oarse-graining method is s
hematized in Fig. 4.2.

4.1.3 The Chapman-Kolmogorov 
ondition and time reversal sym-

metry.

The �nal expression for the probability transition matrix (4.5) found after applying the

formalism of Refs. [12, 13℄ follows dire
tly from equation (4.4) and the Ansatz (4.3), whi
h

implies ϕ† ·Π = I. These relations are equivalent to the so-
alled 
ompatibility 
ondition:

Π · (LE)t · ϕ† = W t.
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Figure 4.2: The distribution ρt(M) at a time t is s
hematized in the distribution on the

left. The fra
tion inside the interval Ik, is distributed, after the evolution into a new dis-

tribution ρt+1(M) s
hematized in the diagram on the right. The normalized distribution

provides the k-th element of the i-th 
olumn: wik.

This 
ompatibility 
ondition (or Chapman-Kolmogorov 
ondition) arises as a result

of the approximations done in Se
tion 4.1.1, however it is not a general property of the

dynami
s. For instan
e, by taking a 
omplete 
y
le (t = T ), one readily gets

Π · (LE)T · ϕ† = I,

(with I being the identity matrix) whi
h, evidently, di�ers from WT
, be
ause W repre-

sents an irreversible behavior toward equilibrium. Therefore, the 
ompatibility 
ondition

is only valid as an approximation for a limited number of time steps whi
h enters into a

parti
ular sequen
e. The same argument holds for the redu
ed matrix Ŵ de�ned through

(4.7).

Let us 
all Ŵ (τ)
the resulting probability transfer matrix after τ steps, that is, by


omputing Ŵ as a 
onsequen
e of the evolution from t up to t + τ , then, the Chapman-

Kolmogorov or 
ompatibility 
ondition for Ŵ reads

Ŵ (τ) = Ŵ (τ1) · Ŵ (τ2), (4.8)

where τ = τ1 + τ2. In parti
ular, for τ1 = τ2 = 1 one should satisfy

Ŵ (2) = Ŵ · Ŵ = Ŵ 2.
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Other 
ompatibility 
onditions are

Ŵ (3) = Ŵ (2) · Ŵ ,

Ŵ (3) = Ŵ · Ŵ (2),

Ŵ (4) = Ŵ (2) · Ŵ (2),

Ŵ (4) = Ŵ · Ŵ (2) · Ŵ , etc.

Ŵ (3) = Ŵ (2) · Ŵ ,

Ŵ (4) = Ŵ · Ŵ (2) · Ŵ , etc.

In se
tion 4.2.3 we shall 
he
k in pra
ti
e how good are these Chapman-Kolmogorov


onditions satis�ed.

Finally, let us state an important result due to Pomeau [45℄. The K-time 
orrelation

fun
tions impose some restri
tions on the W -matrix.

Be
ause of time reversal symmetry, for all indi
es i1, i2, · · · iK = {1, 2, · · ·K}, the
symmetry relation

wi1i2wi2i3 · · ·wiK−1iKwiKi1 = wi1iKwiK iK−1
· · ·wi3i2wi2i1 (4.9)

must be satis�ed.

In what it follows, we apply this 
oarse graining approa
h to 
ompute the probability

transfer matrix for some parti
ular 
ases.

4.2 Spe
i�
 
omputation of the transition probability

matrix in various situations.

In this se
tion we shall apply the 
oarse graining approa
h to the Q2R dynami
s in the 
ase

of a small latti
e size. In Ref. [19℄ we have fairly explored the 
omputation of the transition

probability matrix, in parti
ular, in the 
ase of extended systems (N = 256 × 256).
However, in this 
ase the 
y
les are usually huge, therefore this general approa
h is not

really satisfa
tory. In this sense, we fo
us our e�ort in treating systems of moderate sizes,

namely N = 4× 4, N = 8× 8, and N = 16× 16, having all of them tra
table 
y
les.

4.2.1 Robustness of the methodology.

In general for a system of small size, one is able to �nd some 
y
les for a given energy.

Building a time series for the magnetization {M(t)} = {M1,M2, · · ·MT }, then one de�nes
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a partition on the possible values of the magnetization, as explained in a previous Se
.

4.1. In the 
ases 
onsidered here, it is always possible to use the �nest possible partition,

that is, for the exa
t available values of the magnetization (something impra
ti
al in large

systems). In this 
ase the partitions are 
omposed by a set of N + 1 (N is assumed to be

even) well de�ned values M = {−N,−N + 2,−N + 4, · · · , N − 2, N}. That is for 4 × 4
the partition has a maximum of 17 elements, for N = 8 × 8 there are 65 elements, and

for N = 16× 16 the partition possesses a maximum of 257 elements.

A �rst result 
on
erns the equivalen
e of the probability density fun
tion of magneti-

zation obtained via the time series of the magnetization and the equilibrium distribution

resulting from the eigenve
tors of the transition probability matrix Ŵ . Hen
e, the results

arising from temporal averages and transition probability matrix into the 
on�guration

spa
e are 
onsistent among themselves. This fa
t ensures a �rst validation of the method.

However, the transition probability matrix provides extra information on a system, among

them, the non-equilibrium properties, given by the spe
trum of Ŵ .

Next, we shall des
ribe the methodology for the 
ase of a latti
e of size 16× 16 for an
orbit with E = −292 and period T = 43115258.

The transition probability matrix Ŵ is 
onstru
ted following the steps of the previous

se
tion 4.1.2. But �rst, we shall verify that the master equation does not strongly depend

on the length of the time series for the magnetization. It is important to remark that we

think that this is a 
ru
ial step, be
ause it allows us to 
ompare expli
itly the dependen
e

of the results on the partial length of the 
y
les, something whi
h is not possible for larger

systems, be
ause in these 
ases we shall never be able to build the 
omplete period for

the time series.

To test the above, we shall use again the �nest partition. In this 
ase, the transition

matrix is of dimension 257 × 257 (so we shall not provide them expli
itly) and we shall


hara
terize it by its equilibrium distribution, and the full set of eigenvalues of Ŵ . Fig.

4.3 (a) plots the equilibrium distributions feq for the total 
y
le T and fT ∗

for the partial


y
le of length T ∗
. Similarly, Fig. 4.3 (b) plots the set of 257 eigenvalues, denoted by

λT ∗

i , for the same sequen
e, {M(t)}, but for four di�erent lengths of the time series.

Visually it 
annot be observed any substantial di�eren
e among the di�erent values of

T ∗
. Moreover, Table 4.1 
ompares quantitatively the mean square di�eren
e measuring

Q1 = ||fT ∗ −feq||2/K and Q2 =
∑K

i=1 |λi−λT ∗

i |2/K. Here K is the number of partitions.

Noti
e that an important feature of the transition probability matrix is that its eigen-

values are real if the time series satis�es reversibility [45℄. We have veri�ed that the


oarse-graining approa
h applied to the full 
y
le with period T shows this important fea-

ture. Namely, the eigenvalues of the Ŵ matrix are real numbers. However, as we apply
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Figure 4.3: (a) Plot of the equilibrium distribution feq for the 
ase of a 16×16 system size

with E = −292 (E/N ≈ 1.14) and a 
y
le of period T = 43115258 (the 
omplete 
y
le).

The 
omputation of feq is 
ompared with shorter sequen
es of the same time series of

length T ∗ = 106, 5× 106, &20× 106. (b) The set of 257 eigenvalues of the Ŵ -matrix for

the same 
onditions of (b).

T∗ Q1 Q2

106 3.95× 10−5 0.0038
5× 106 3.91× 10−5

0.0020

20× 106 3.84× 10−5 0.0002

Table 4.1: Error estimation of the equilibrium distribution and the spe
tral de
omposition

of the Ŵ matrix for di�erent lengths of the time series.

the same approa
h to a partial sequen
e of the same 
y
le of length less than T , some

eigenvalues be
ome 
omplex (typi
ally lo
ated near the origin in the 
omplex plane). This

is important, be
ause in pra
ti
e for larger size systems, one never 
loses a 
y
le, hen
e

only in
omplete sequen
es are available, thus the matrix would not have, in general, pure

real eigenvalues. However, we emphasize that the existen
e of these 
omplex eigenvalues

is spurious.

Finally, it is important to 
ompare results for partitions of di�erent size. First, we


ompute the equilibrium distribution for three di�erent partitions sets. More pre
isely,

for a 8× 8 system evolving by Q2R at E = 0 in a periodi
 orbit of T = 672018.

Figure 4.4 (a) 
ompares the three di�erent 
oarse-graining partitions (
ontaining 5, 11
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and 34 elements). Despite the evident di�eren
es among the 
oarse and the �ner graining

partitions, one noti
es that both partitions exhibit the same a

urate behavior of the

equilibrium distribution. Moreover, Figure 4.4 (b) 
ompares the se
ond eigenmode χ(2)

without any substantial di�eren
e among the partitions.
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Ŵ = 11 × 11
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Figure 4.4: (a) Plot of the equilibrium distribution feq vs M for a 8 × 8 system size

with E = 0 and a 
y
le of a period T = 672018 for three di�erent partitions of the

magnetization values. The plot shows how all distribution fun
tions lies under the same


urve. The inset shows the paraboli
 behavior in magnetization whi
h after a �t reads

log feq = −M2/116. (b) Plot of the se
ond eigenmode χ(2)

orresponding to the eigenvalue


losest to the unit 
ir
le. One noti
es how all partitions produ
e similar results.

In what follows, we summarize the methodology for 
ases of size 4 × 4, 8 × 8 and

16 × 16. In all 
ases, the full 
y
les were 
onsidered, and we provide the �nest possible

partition.

4.2.2 Exa
t 
al
ulation for various latti
es.

We have studied in detail the 
ase of a 4 × 4 periodi
 latti
e, be
ause the phase spa
e

possesses 232 ≈ 4 × 109 distin
t 
on�gurations and the 
al
ulations 
an be 
ompletely

performed thus showing expli
itly the method. It is shown that the 
oarse graining ap-

proa
h is fully appli
able in the 4× 4 latti
e 
ase. We used di�erent partitions getting a

well de�ned probability transfer matrix Ŵ .

We shall explore few 
y
les for larger systems (8 × 8 and 16 × 16). The 
y
les in

these 
ases may be as long as desired for any pra
ti
al purpose, so that the equilibrium
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distribution is 
al
ulated with enough pre
ision.

In the 
ase of 8 × 8, for various energies and the �nest possible 
oarse graining, as a

sake of brevity, we omit expli
itly the plots of the �rst eigenve
tor, feq, as well as the

eigenvalues, be
ause they are similar to the 16× 16 latti
e 
ase.

The 
ase of a 16× 16 system size displays the most a

urate equilibrium distribution

found in the 
urrent resear
h. The �u
tuations around the distribution are small, and

the eigenvalues seems to form a 
ontinuous spe
trum (the di�eren
e among two 
onse
-

utive eigenvalues is small). We have also explored a wide range of energies. The rank

of the matri
es (that is for the �nest partition) are K = 122 for E = −332; K = 205
for E = −316; K = 197 for E = −292; K = 129 for E = −168; andK = 101 for E = −92.

The equilibrium distribution, as a fun
tion of the magnetization, is plotted in Fig. 4.5

(a). Similarly, the spe
tral de
omposition is shown in Fig. 4.5 (b).

In Fig. 4.5 (a) one noti
es how in the 
ase of larger energies, say E = −92 and

E = −168, the equilibrium distribution fun
tion is symmetri
, under the 
hange M →
−M , however as the energy de
reases one sees that for the lowest energy, E = −332,
it appears a spontaneous symmetry breaking, so that the equilibrium distribution is not

anymore an even fun
tion. The equilibrium probability may manifest a positive or nega-

tive magnetization (swit
hing from one 
ase to the other by 
hanging the initial 
ondition

via the transformation {x, y}t=0 → {−x,−y}t=0
). Moreover, the energy E = −316 
ase

shows an equilibrium probability density fun
tion that manifests bi-stability. Indeed,

these bi-modal distributions possess three peaks, one at M = 0 and the two other at

M = ±M0 6= 0. Finally, the width of the probability density fun
tions in
reases near the

transition energy.

Fig. 4.5 (b) shows the spe
tral distribution of the probability transfer matrix that

de�nes the master equation. Already for a latti
e of size 16 × 16 one observes how the

spe
tral distribution is almost 
ontinuous. One noti
es that the energies E = −316 and

E = −292 possess the largest eigenvalues for a given index i. This means that, probably,

the largest eigenvalues o

urs near the 
riti
al energy.

It is interesting to remark that the non-equilibrium is governed by those eigenvalues


lose to one. The non-equilibrium features behave as slow modes. In the 
urrent, 
ase

one has ft =
∑K

i=1 αiλ
t
iχ

(i). De�ning σi = − log λi, one obtains the usual slow mode

relaxation. Moreover, the global behavior of the eigenvalues 
losest to the unity, represents

the transport 
oe�
ients [19℄. Fig. 4.5 (b) indi
ates that λi ≈ 1−γi, something suggesting

that the non-equilibrium features are governed by a Fokker-Plan
k kind of equations. The

behavior of the eigenve
tor agrees also qualitatively with this pi
ture (see [19℄ for more

details).
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Figure 4.5: (a) Equilibrium distributions, feq, for the 
ase of a 16× 16 system size, and

for the energies and periods: E = −332 and T = 796398, E = −316 and T = 4015624,
E = −292 and T = 43115258. We also 
onsider E = −168 and E = −92 with periods

larger than T > 108. (b) Eigenvalues of the W -matrix showing the existen
e of long-wave

relaxation properties.

4.2.3 The Chapman-Kolmogorov 
onditions.

We have 
he
ked the Chapman-Kolmogorov relations for the 
ase of Q2R in a 16 × 16
latti
e for the 
ase of E = −292 and a periodi
 orbit of T = 43115258. We have built �ve

di�erent probability transfer matri
es Ŵ (τ=1), · · · , Ŵ (τ=5)
(See Se
. 4.1.3 for the de�nition

of Ŵ (τ)
).
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First, we 
ompared the matri
es Ŵ (τ=2)
and Ŵ (τ=1) · Ŵ (τ=1)

, both of rank 197× 197,

omputing the distan
e among them, e.g., Ŵ (τ=2)

and Ŵ (τ=1) · Ŵ (τ=1)
, via the usual

distan
e (the square indi
ates the produ
t of a matrix by itself)

d =
1

K2
Tr[(Ŵ (τ=2) − Ŵ (τ=1) · Ŵ (τ=1))2].

In the 
urrent 
ase, the matri
es are similar up to d = 5.81 × 10−6
. More quantita-

tively, we look how good are the eigenve
tors of di�erent matri
es, namely Ŵ (τ=2)
and

Ŵ (τ=1) · Ŵ (τ=1)
. To do that, we 
omputed the ratio among the n-th eigenve
tors of the

aforementioned matri
es, that is,

qn =
χ(2)

n

χ(1)
n

,

where χ(2)
n and χ(1)

n are the n-th eigenve
tor of the matri
es Ŵ (τ=2)
and Ŵ (τ=1)

. This

quantity is plotted in Fig. 4.6. One noti
es that qn ≈ 1 almost for all values of magne-

tization, but it also has an anomalous behavior near the nodal points of the eigenve
tor

χ(1)
n. In general the agreement of all this eigenve
tors is satisfa
tory.
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Figure 4.6: Plot of the ratio qn for �ve eigenmodes for the 
ase of a 16× 16 system.

Next we 
he
k, the Chapman-Kolmogorov relations written in Se
. 4.1.3, 
omparing

the spe
tral properties of both matri
es, namely the set of eigenve
tors and its eigenvalues.

As it 
an be seen in Fig. 4.7 (a) the equilibrium distribution feq mat
hes perfe
tly for

di�erent values of τ = {1, 2, 3, 4, 5}. This proves that the equilibrium 
on�guration, feq,

is an invariant of the dynami
al system. However, non-equilibrium properties do depend

on the sampling time, τ . Indeed, the eigenvalues 
orresponding to di�erent probability

transfer matri
es do depend on the 
hoi
e of the parameter τ . This is not a surprise,

be
ause it is expe
ted that the eigenvalues, λ
(τ)
i , of Ŵ (τ)

should s
ale as λ
(τ)
i = λτ

i , where
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Figure 4.7: (a) Equilibrium distributions, feq, for the 
ase of a 16× 16 system, and for

the energy E = −292 and T = 43115258. (b) Eigenvalues of the W -matrix showing the

existen
e of long-wave relaxation properties.

λi are the set of eigenvalues of Ŵ
(τ=1)

. This s
aling is shown in Fig. 4.7 (b) indi
ating

an anomaly be
ause it does not work for the 
ase τ = 1, but the s
aling works well for

higher τ . This deserves more 
areful study.
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4.3 Slow modes and transport 
oe�
ients

The approa
h to equilibrium follows from the already dis
ussed solution ft = Ŵ t
f0, whi
h

maybe expanded in terms of the eigenve
tors of the Ŵ -matrix, getting ft =
∑K

i=1 αiλ
t
iχi.

Therefore, the Eigenvalues near the unity behaves as slow modes. If one de�nes σi =
− log λi one obtain the usual slow mode relaxation:

ft =
K
∑

i=1

αie
−σitχi. (4.10)

Moreover, the eigenvalues 
losest to the unity, represents the transport 
oe�
ients,

whi
h we shall investigate in the following.

We have 
onsider the 
ases of a 16 × 16 system size and a wide range of energies.

The rank of the matri
es (that is for the �nest partition) are K = 122 for E = −332;
K = 197 for E = −292 and K = 101 for E = −92. We have showed in Figure 4.3(b) the

eigenvalues |λi|, ordered by de
reasing absolute value, as a fun
tion of its order. As a �rst

sight we have the impression that λi ≈ 1 − βi2 (for i < 15) 
hara
teristi
 of a di�usive

mode, however for larger value of i one sees λi ≈ 1− γi .

The Eigenmodes 
orresponding to i = 2, to 4 are also plotted in Figure 4.8, showing

the usual behavior of a 
on�ned Eigenvalue problem, whi
h does not seem to agree with

the di�usive mode.

A possible explanation of the behavior of the eigenvalues, λi ≈ 1− γi, is in agreement

with a 
ontinuos limit approximation of the Master equation (4.7) leading a Fokker-

Plan
k-type equation:

lim
∆M→0

(ft+1 − ft) =
(

Ŵ − 1̂
)

ft → ∂P
∂t

=
∂

∂M

(

β
∂P
∂M

+ γMP
)

. (4.11)

The slow mode dynami
s is provided by the Eigenvalue problem:

−σϕ =
∂

∂M
(βϕ′ + γMϕ) . (4.12)

whi
h has a solution

σi = γ i and ϕi = Hi

(

M

√

γ

2β

)

e−
γM2

2β ,
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Figure 4.8: Slow modes of the 
ase 16 × 16. Here we have presented χ2, χ3 and χ4

Eigenmodes of the Ŵ matri
es, for the energies E = −332, E = −292 and E = −92
respe
tively.

where Hi(x) is the Hermite polinomial of degree i whi
h is a nonnegative integer: i =
0, 1, 2 . . . . Though, the behavior of the Eigenvalues is not the good one for i < 15, the
behavior of the Eigenmodes seems to be the adequate.
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4.3.1 Pomeau's reversal symmetry relation.

A

ording to Pomeau [45℄, the mi
ros
opi
 time reversal symmetry imposes the symmetry

relation (4.9). For a rank K transition probability matri
es, it is possible to verify that

there are KK
di�erent required 
onditions (4.9). Therefore, to 
he
k this 
ondition is only

possible for a moderate ranks K. For the 
ase 4 × 4 all probability transfer matri
es of

the Supplementary Information satisfy the Pomeau's reversal symmetry relation.

For larger Ŵ matri
es, say K > 9, we have not 
he
ked Pomeau's relation be
ause it

involves a 
umbersome numeri
al 
al
ulation.

4.4 Appendix

4.4.1 Exa
t 
al
ulation for the 4× 4 latti
e.

Consider the 
ase of a 4 × 4 periodi
 latti
e. Though the Q2R dynami
s is extremely

simple, the 
al
ulations are exa
tly realizable up to end and for all 
on�gurations, thus it

may expli
itly explain the method. The phase spa
e possesses 232 distin
t 
on�gurations
whi
h may be 
omputed dire
tly. The energy takes possible values ranging from −32 ≤
E ≤ 32. We have 
hara
terized few spe
ial 
ases with energies and periods distributed

uniformly over the all possible values:

(E, T ) = (−24, 6) (−22, 10) (−18, 54) (−8, 270), (−2, 1080) and (0, 120)

. In all 
ases below we shall take the �nest partitions in whi
h a magnetization belongs

into a well de�ned value from M = −16, . . .M = 16. Usually the interval is less than 17

and 
urrently the rank of the matri
es ranges from K = 2 up to K = 9.
The eigenvalues and the invariant probability distributions (the 
orresponding Eigen-

ve
tors asso
iated to the unique unitary Eigenvalue) of these matri
es are:
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We noti
e that the 
ase E = 0 is showed up in the �nest partition. A
tually, in the

�nest partition this 
ase the probability transfer matrix has a rank K = 9. But it has

three zero eigenvalues and two 
omplex one. We interpret that the �ne 
oarse graining

is not a good partition. This partition must no be an invariant measure as required in

Ref.[13℄. Why does this happen in the present 
ase?, and it does not happen in other

needs to be elu
idated.

4.4.2 The Chapmann-Kolmogorov 
ondition

W (1) =













1002561
1237039

234478
1237039

0 0 0
234478
5406141

362248
415857

462439
5406141

0 0
0 462439

8877658
7981253
8877658

216983
4438829

0
0 0 216983

2549358
636691
728388

207913
5098716

0 0 0 207913
938075

730162
938075













(4.13)

Finally, we emphasize the following remarks:

1. Both partitions are symmetri
 in the sign of M , further we observe that the equi-

librium probability are symmetri
 under the transformation M → −M .

2. The equilibrium probability are identi
ally for the 
ases E = ±4, re
overing a hid-

den symmetry of the system. However the non-equilibrium behavior is di�erent

be
ause the 
orresponding Eigenvalues have distin
t signs. Noti
e, however, that

this �hidden symmetry� is apparently not observed in numeri
al simulations of the

Q2R model (see Fig. 2.8). A more 
areful inspe
tion of the dynami
s indi
ates

that in the 
ases of the initial 
onditions R2 and R4 (Fig. 2.8), the magneti-

zation is swapping 
onstantly in time, for instan
e, if the sequen
e of values of

magnetization for R1 is {M0,M1,M2,M3, . . . }, thus, the sequen
e for R3 would be

{M0,−M1,M2,−M3, . . . }. Therefore, the temporal average of the magnetization,

as 
omputed in Fig. 2.8, would be zero for the 
ases of R3 and R4. Moreover, taking

an average but ea
h every two steps one re
overs the Ising bifur
ation for positive

values of energies. Therefore, the symmetry among positive and negative energies

is re
overed in the phase diagram.

3. It is noti
ed, that there is qualitative di�eren
e for distin
t energies: for E = −4 the
equilibrium distribution has a maximum for M 6= 0, while its maximum is lo
ated

at M = 0 for the 
ase E = 0, this is the pre
ursor of the Ising transition, as observed
in Fig. 2.8.
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Chapter 5

Con
lusions

The main goal of this thesis was studies the dynami
s of the Q2R 
ellular automata, using

tools of the statisti
al me
hani
s. The model possesses di�erent behaviors and features,

su
h as, reversibility, a 
onservative quantity and a phase transition, whose origin is based

from the well-know Ising model.

In the �rst 
hapter, we have presented the several features of di�erent models that

possess a dire
t 
onne
tion with the Ising model, su
h as, the Glauber-Ising time depen-

dent model, the Q2R 
ellular automata, the S
helling model for so
ial segregation, the

de
ision-
hoi
e model for so
ial s
ien
es and e
onomi
s and �nally the bootstrap per
ola-

tion model for diseases dissemination. Moreover, the statisti
al des
riptions were: Phase

transitions, Bifur
ations and Phase Diagrams and most important, the existen
e of a 
ore

prin
iple, e.g., energy minimization whi
h appears to be a robust feature of these models.

However, these presents distin
t properties. The Glauber Dynami
s does not preserve

neither the energy or magnetization, however the Q2R dynami
s does preserve only the

energy but does not preserve the magnetization. The S
helling model does preserve only

the magnetization, but if θk > |Vk|/2 the system's energy is stri
tly a de
reasing fun
tion.

Finally, in the infe
tion model, the energy stri
tly de
reases whereas the magnetization

is an in
reasing fun
tion of time.

Then, in the se
ond 
hapter, we have introdu
ed the 
ore of this investigation, the

des
ription of the Q2R 
ellular automata. Where, the numeri
al simulations in absen
e

of any numeri
al approximattion showed that the model exhibit ferromagneti
 and para-

magneti
 behaviors respe
t to the energy. Moreover, the main phenomenon of the model

is the phase transition, when one 
onsider a system sizes N = 256 × 256 and a value of

energy E/N ≈ −
√
2 (
alled the 
riti
al energy). This energy 
onne
ts the dire
t relation

with the Ising model.

On the other hand, the reversibility that exhibit the 
ellular automata, turn in, a ri
h

63
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dynami
s 
hara
terized by a huge number of invariants whi
h partitions the phase spa
e

in terms of the 
onserved energy and a huge number of periodi
 
y
les. These 
y
les 
an

be from a �xed point to long orbits, for the 
ase of an 4 × 4 latti
e, the longer 
y
les

was 1080 when the energy 
an take values E = ±2. However, using the de�nition of

the Hamming distan
e, the systems presents two type of behaviors similarly to a random

walk, and Lévy �ight in the 
on�guration spa
e, typi
ally, this type of behaviors has been

observed in the models that take a di�usive dynami
s. This 
an be a good way for study

how 
onservative system 
an develop a behavior of type di�usive.

Finally, we have 
losed this investigation with the introdu
ed of a 
oarse-graining

approa
h, that allowed us to write a 
oarse-grained master equation, whi
h 
hara
ter-

izes equilibrium and non-equilibrium statisti
al properties of the system. We reviewed

the methodology and tested the 
onsisten
y of results in latti
es of di�erent sizes. We

found that for well 
hosen partitions, this 
oarse graining te
hnique is a powerful tool

to redu
e the information of the whole system in su
h a way as to obtain a tra
table

probability transfer matrix whi
h simpli�es the original master equation. A �rst 
entral

property of this matrix, is the existen
e of an invariant probability distribution whi
h

agrees with di�erent 
oarse-graining pro
edures. Se
ondly, we 
omputed the spe
tral

de
omposition of the probability transfer matrix 
hara
terizing the non-equilibrium prop-

erties of the system. Finally, we 
he
ked the 
ompatibility 
onditions, as well as the time

reversal symmetry 
onditions for short time steps. In many situations the methodology

is 
onsistent and provides a 
omplete statisti
al des
ription of the system. However some

dis
repan
ies appears whi
h deserves 
aution. This study provided us with a systemati


approa
h for redu
ing the number of pertinent ma
ros
opi
al variables resulting into a

manageable master equation.
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Abstract

A coarse graining process is applied to a Ising like model with a conserva-
tive and a reversible dynamics. It is shown that, under some assumptions,
this coarse graining leads to a tractable probability transfer matrix of fi-
nite size which provides a master equation for a coarse graining probability
distribution. Some examples are discussed.
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1 Introduction

The long time behavior of conservative and reversible systems with a huge number degrees of freedom usually
requires a statistical description which introduces distribution functions of the system. Irreversibility, equilib-
rium, and more important non-equilibrium properties surge from this probability and its evolution.

In this context, statistical physics starts from a number of, reversible and conservative, ordinary differential
equations for Newtonian particles; or, alternatively, with the Liouville description. This cumbersome problem,
even for modest number of particles, therefore one reduces (under some assumptions) to a kinetic description
which displays the irreversible behavior to equilibrium observed in macroscopic systems. The assumptions for
this approach are: i) a macroscopical system does not require a huge number of variable but a limited set of
macroscopic observables; ii) Only a coarse grained description of these macroscopic variables has a sense (that
is the impractical possibility to measure a quantity with infinite precision), iii) The robust instability of the
microscopic motions which is at the basis of the sensibility to the initial conditions and the ergodic hypothesis.
iv) A Stosszahlansatz which introduces explicitly a broken before-after symmetry of the probability distribution
evolution.

About 20 years ago, Nicolis et al. [1,2] introduced a systematic corse graining on the macroscopical variables
and they were able to derive a master equation, for a reduced probability distribution function of the system. In
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the present paper, we shall apply this systematic approach to a conservative and explicit reversible cellular
automata system. Consequently, we shall consider the Q2R model, introduced by Vichniac in the mid 80s [3],
which preserves exactly a kind of energy [4].

The main reason to apply the coarse graining approach to a cellular automata instead to a coupled system
of ordinary differential equations, is because a cellular automata is a discrete model with boolean entities as mi-
croscopic variables, therefore, there are no round errors neither approximations in the numerical computations,
hence, the system is both theoretically and numerically reversible and conservative.

The study of the dynamics and properties of the Q2R model has a long history. In 1986 Herrmann [5]
implemented the Q2R algorithm to study the two space dimensional Ising model in a microcanonical description.
He studied the global magnetization, obtaining an excellent representation for the magnetization as a function
of the initial conserved energy. Later, Takesue [6] focused on the possible realization of statistical mechanics
for reversible cellular automata, showing that under certain conditions the system may be described in terms
of a canonical description. His studies concerned explicitly all class of rule in the one dimensional case, the
Q2R being only a special case. However, the Q2R (90R in his terminology), is the analogue of an ideal gas
of particles with speeds +1 or -1, a system that cannot reach equilibrium in practice. It is ergodic only in the
thermodynamical equilibrium. More recently, in Ref. [8], one of us (SR) has studied numerically the irreversible
behavior and the existence of a spontaneous transition from a non-coherent state to a coherent state in the frame
of the reversible cellular automata Q2R.

The present article is organized as follows, the Q2R model,as well as its main properties are presented in
section 2 We briefly report the numerical studies of Ref. [8] in section 3 The coarse graining in presented in
section 4, and some examples are explicitly in next section 5 Finally, the slow modes and transport is discussed
in section 6

2 The Q2R Model

For simplicity we shall consider a regular two dimensional lattice with N = L2 � 1 nodes, each node is only
seen by its four closest neighbors (von Neuman neighborhood), finally we use periodic boundary conditions.

Each node k possesses a discrete value xk that may take values +1 and -1. The Q2R rule considers the
following two step rule [3]:

xt+1
k = xt−1

k φ(∑
i∈V

xt
i),

where the function φ is such a that φ(s = 0) =−1 and φ(s) = +1 in all other cases.
This two step rule may be naturally re-written as a one step rule with the aid of an auxiliary dynamical

variable [4]:

yt+1
k = xt

k

xt+1
k = yt

k φ(∑
i∈V

xt
i). (1)

As shown by Pomeau [4], the following quantity, that we call by an energy

E[
{
xt ,yt

}
] =−1

2 ∑
〈i,k〉

xt
ky

t
i, (2)

is preserved under the dynamics defined by the Q2R rule (1). Moreover, the energy is bounded by −2N ≤ E ≤
2N.

Despite the existence of an invariant that is a kind of energy, it does not seem possible to speak about a
Hamiltonian discrete dynamics because the variables xt and yt and the energy E (2) are discrete variable and
quantities [4].
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The rule (1) is complemented with an initial condition xt=0
k and yt=0

k that we shall describe more precisely in
the next section..

For a finite system size the Q2R automata is always periodic. This period is naturally shorter than (or equal
to) the total number of possible configurations with a given energy E (and necessarily shorter than the longest
possible period, which is the total number of configurations 22N ). Moreover, it has been shown numerically, that
Q2R could have clusters of small periodic motion [7]. However, in practice, for a large enough systems and
for random initial conditions, the observation of a periodic dynamics is really improbable. In general, there is a
huge number of initial conditions that are “almost” ergodic.

Similarly, one may ask about a “sensibility to the initial conditions”. In Ref. [8], it is shown numerically, that
if one starts with two distinct, but close, initial conditions, then, they evolve in very different paths as time goes
a. In some sense, an initial state explores vastly the phase space allowed. This is essentially the fundamental
reason why we may use the grounds of statistical physics for studying this problem.

In summary, although for a finite size system the deterministic automata Q2R is not ergodic, there is a
huge number of initial conditions that explore vastly the phase space, this is particularly remarkably for initial
conditions of random structure, in some sense the dynamic itself realizes a good sampling, so that a statistical
description is possible when the initial condition is random. For instance, take a random initial condition with a
given fixed energy. It is observed, that if the initial energy is smaller than a critical value, the system becomes
spontaneously ordered in average. This transition appears to be of the same class of Ising transition in magnetic
models. Therefore, despite the original system being conservative and reversible, for a large set of initial con-
ditions, the system self organizes into an average macroscopic state with a manifest order as we shall see in the
next section.

3 “Long-time” dynamics of the Q2R cellular automata [8].

In Ref. [8], we have realized numerical simulations of the Q2R model in 2D and we have explored different
system sizes N = 256 × 256 and N = 512× 512. For the initial condition, we consider the following initial
boolean random realization

Bk(p) =

{
+1 withprobability p
−1 withprobability 1− p

, (3)

where, the index k represents the independent realizations over the lattice sites.
In Ref. [8] the special choice of initial conditions such that xt=0

k = yt=0
k = Bk(p). This choice is only for

convenience because it helps us to identify the initial energy in terms of the energy of ferromagnetic system.
Moreover, as stated in [5], this initial condition will be crucial in interpreting the statistical properties of the Q2R
dynamics in terms of the Ising model.

Typically, the dynamics shows in time a very random pattern of local magnetization, having patches with
magnetization +1 and patches with magnetization −1. Also, zones of zero average magnetization are present,
where the spins are in a chessboard-like pattern. The full patterns are difficult to classified and to characterize,
therefore we shall characterize them by a global quantity :

M(t) = M[
{
xt}] = ∑

k

xt
k, (4)

which we call the total magnetization of the system. Naturally, M is also bounded −N ≤ M ≤ N, and the finest
grain description has a discrete separation of ΔM = 2.

A simple mean field estimation relates the magnetization and the total energy with of the initial condition
(3) with p, via the following relations: M/N = (2p− 1), and the mean field energy E/N = −2(M/N)2 =
−2(2p−1)2.

aThe divergence of these two “trajectories” is not exponential because this distance cannot increase indefinitely in a finite system.
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Fig. 1 Magnetization curves as a function of initial energy for a 256×256 system size. The points corresponds to
different initial conditions. Accordingly with the a boolean random set of values, Bk(p), as described in equation (3), the
initial data is: R1 (•): xt=0

k = yt=0
k = Bk(p); R2 (�): xt=0

k =−yt=0
k = Bk(p); R3 (�): xt=0

k = yt=0
k =−Bk(p); and, R4 (�):

xt=0
k =−yt=0

k =−Bk(p).

A detailed characterization of the evolution, as well as, of the fluctuations of the magnetization has been
treated in detail in Ref. [8]. Briefly, after a transient the average magnetization depends mainly on the initial
energy. If the energy is low, one sees that the average magnetization evolves slowly in time to an “equilibrium”
state with an almost constant value plus weak fluctuations. For larger energies, the fluctuations enter to play an
important role. One may observe that the system is in an almost stable state, but then suddenly jumps into a
metastable state with zero average magnetization, and then jumps into an opposite magnetization state.

The plot of the average magnetization (in time and over the sites) versus the initial energy of the configuration
is done in Fig. 1. One sees that the magnetization spontaneously increases below a critical energy per site around
Ec/N = −1.4, close to the critical energy of the Ising model Ec/N = −

√
2 [9, 10]. Moreover, in Ref. [8] we

compare the magnetization as a function of the internal energy of the system showing a close agreement with
the numerical values.

4 Coarse graining and master equation for the probability distribution functions

Although the dynamics of the Q2R model cannot be ergodic, in the usual sense, it is quite random and it
possesses many aspects of chaotic systems, as sensibility to initial conditions, mixing, etc. providing the initial
state is random. Numerical studies shows that the premises of statistical physics are valid, in particular the
observables may be computed using the standard methods of statistical physics. In the following we shall
introduce statistical tools for the understanding the approach to equilibrium of this system.

Given a phase space D that contains all possible configurations of an state {x,y}, then ρ({x,y}) represents
the probability distribution function of the system to be in the state {x,y}. Naturally, the dimension of D is huge,
because it contains 22N elements, but the distribution function moves in a sub-space, of smaller dimension, of
all the configurations with an energy E fixed. The distribution ρE

t ({x,y}) evolves following a Perron-Frobenius
type equation

ρE
t+1 = L EρE

t

which, in principle, maybe computed after the microscopic rule of evolution (1).
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Fig. 2 The distribution ρt(M) at a time t is schematised in the left distribution. The fraction inside the interval Ii, is
distributed, after the evolution into a new distribute ρ̃t+1(M) schematised in the left diagram. The normalised distribution
provides the k-th element of the i-th column: wik.

The knowledge of the explicit the reduced Perron-Frobenius operator L E is impractical because of the large
number of possible values of degrees of freedom. Therefore, usually one restricts the description to a reduced
distribution which is only a function of E and M. This reduced probability distribution function reads ρt(M),
and satisfy a new master equation ρt+1(M) = W ρt(M), the linear operator W acts only in the subspace of
constant E , but is spanned over arbitrary values of magnetization. As the original Perron-Frobenius equation,
W depends explicitly of the Q2R rule and maybe computed in principle. However, in practice, it is necessary
to reduce again the information via a coarse graining partition of the possible values of M. The partition is
defined through a set of no overlapping intervalsb: I1 = [−N,M1), I2 = [M1,M2), . . . IK−1 = [MK−2, MK−1), IK =
[MK−1,N], and we denote the original distribution function ρt(M) by a discrete vector of dimension K, that is :
ρt(M)→ fff t = ( f1, f2, . . . fK). Notice that this probability vector should be normalizable to the unity, let be the
vector K-dimensional vector 111 = (1,1, . . .1), then 111 · fff t = 1.

Therefore, we construct a corse grained master equationc

fff t+1 = Ŵ fff t (5)

where W is the probability transition matrix defined via the following conditional probability:

wik = P(Mt+1 ∈ Ik|Mt ∈ Ii) =
P(Mt+1 ∈ Ik ∩Mt ∈ Ii)

P(Mt ∈ Ii)

being Mt at the interval Ii at the time t, and Mt+1 would be at the interval Ik at t+1.
Because of normalization, ∑K

i=1 wik = 1, therefore the left hand productd 111 ·Ŵ = 111. This implies that the
probability is conserved 111 · fff t+1 = 111 ·Ŵ fff t = 111 · fff t = 1. Finally, the Ŵ matrix does not depend on time, which is
a characteristic of a Markov process. The coarse graining method is schematized in Fig. 2.

To conclude this section, we shall discuss the equilibrium distributions, the general properties that the W
matrix should satisfy, as well as the conditions on the partitions.

The Perron-Frobenius equation maybe solved exactly, provided an initial distribution fff 0 and the knowledge
of the Ŵ -matrix, indeed:

fff t = Ŵ t fff 0. (6)

The power of the matrix Ŵ t maybe computed with the aid of the eigenvalues (λi) and eigenvectors (χχχ i) of Ŵ .e

Because of the Frobenius theorem, one eigenvalue, λ1, is exactly 1, while others eigenvalues are inside the

bIf the systems posses more than one observable, one proceeds similarly.
cIn the present article we use a different notation from the one of Refs. [1,2]. The vectors in Eq. (5) are column matrices, the matrices

are denoted as Ŵ , finally, the usual matrices product operates.
dThat is the transpose of 111 acting on Ŵ .
eWe shall normalize the Eigenvectors as 111 ·χχχ i = 1.
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unitary circle |λi|< 1 for i> 1. Let us denote fff eq by the Eigenvector associated with the Eigenvalue λ1 = 1, this
is an invariant vector fff eq = Ŵ fff eq. This vector is, by definition, the equilibrium distribution.

The limit t → ∞ of equation (6), fff ∞ = limt→∞Ŵ t fff 0 = Ŵ eq fff 0, is well defined. Indeed, expanding the initial
distribution in terms of the eigenvectorsf :

fff 0 =
K

∑
i=1

αiχχχ i,

one obtains that

fff t =
K

∑
i=1

αiλ t
i χχχ i.

Therefore, in the limit t → ∞, fff eq = α1χχχ1 = χχχ1.
Moreover, the equilibrium probability transfer matrix, Ŵ eq, also exists, and it is built with K replicas of the

invariant vector fff eq as columns: Ŵ eq =
(
fff eq, fff eq, . . . fff eq

)
.

One may wonder if one realizes the same process but instead to look at the system at times t and t+1, one
looks at time t and t+2 or more generally at t and t+T . Let us call Ŵ (T ) the resulting probability transfer matrix
after T = T1+T2 iterations, therefore it is easy to show that this matrix should verify the Chapman-Kolmogorov
condition,g

Ŵ (T ) = Ŵ (T1) ·Ŵ (T2).

In particular, for T = 2 one has
Ŵ (2) = Ŵ ·Ŵ = Ŵ 2,

which is true for conditional probabilities, because of the relation P(Mt+2 ∈ Ik|Mt ∈ Ii) = ∑ j P(Mt+2 ∈ Ik|Mt+1 ∈
I j)P(Mt+1 ∈ I j|Mt ∈ Ii), which is equivalent to the right hand side.

At this respect, there are some open questions:
- Is T = 1 the pertinent time scale to define W? One may wonder if the system is Markovian in the shortest

time scale, that is one may think that the system possesses a characteristic time scale, such a that beyond this
time, the system becomes Markovian.

-Which is the adequate value for T to describe the system with the present approach? A detailed study at
this respect deserves more work.

Finally, though in practice the choice of partitions is done in a pure qualitative way, it is crucial to have an
idea how the phase space evolves in time under the dynamical system. In Ref. [1], it is considered a Markov
partition in which case the boundaries of the intervals Ik are kept invariant by the dynamics. This is easy to
precise a in a small degrees of freedom system, because of the existences of fixed points, separatrices and so
on. In the present case the qualitative behavior of the phase space is vastly unknown. In some cases a negative
magnetization stay negative, in some others it passes to be positive, etc Therefore, a not precise rule maybe
extracted.

In the following section we provide some examples of the procedure.

5 Examples

5.1 Exact calculation for the 2×2 lattice.

Consider the case of a 2×2 periodic lattice. Though this is the smallest possible version of the Q2R automata,
and the dynamics is extremely simple, the calculations are exactly realizable up to end, therefore it shows
explicitly the method. The phase space possesses 22×4 = 256 distinct configurations which maybe computed

fRecalling that the initial distribution should be normalizable: 111 · fff 0 = 1, hence, one has the condition ∑K
i=1 αi = 1, however there is

a extra free condition and we shall impose α1 = 1.
gActually it is sufficient to verify the case of T2 = 1: Ŵ (T) = Ŵ (T−1) ·Ŵ .
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directly. The energy takes possible values E = {−8,−4,0,4,8}. Among of them, 4 configurations have an
energy E = −8; 48 configurations have an energy E = −4; 152 configurations have a zero energy (E = 0);
finally, 48 have an energy E =+4 and 4 of them have an energy E =+8.

The magnetization may take values −4,−2,0,2,4, and we shall realize as an example two distinct partitions.

5.1.1 Coarse grained partition

First, let us take a partition of three intervals: I1 = [−4,−2], I2 = [0,0], & I3 = [2,4], that is, the partition splits
the cases of magnetization, greater, smaller and equal to 0. Let us consider the case of E = 0, that is 152 distinct
configurations of the phase space.

Among them, they are distributed with the following magnetizations: 38 with M < 0, 76 with M = 0 and 38
with M > 0. Let us take the 38 configurations with M < 0, after one step of the Q2R algorithm, the 38 initial
states end as following: 8 of them remain in the same partition with M < 0, 22 of them pass to M = 0 and 8 of
them get a positive magnetization. Therefore the first column of the Ŵ matrix is (8/38,22/38,8/38), naturally
their sum is the unity. In a similar way one can build systematically all the other casesh.

The Ŵ -matrices read for distinct energies (we shall omit here the cases with E = ±8 which are not mixing
cases):

ŴE=−4 =

⎛
⎝

4/5 1/2 0
1/5 0 1/5
0 1/2 4/5

⎞
⎠ , ŴE=0 =

⎛
⎝

4/19 11/38 4/19
11/19 8/19 11/19
4/19 11/38 4/19

⎞
⎠ , ŴE=4 =

⎛
⎝

0 1/2 4/5
1/5 0 1/5
4/5 1/2 0

⎞
⎠ .

As a first sight we observe a symmetry property between the cases ŴE=±4. We shall discuss this fact later. The
eigenvalues and the invariant probability distributions (the corresponding Eigenvectors associated to the unique
unitary Eigenvalue) of these matrices are:

λ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{1,4/5,−1/5} , E =−4

{1,−3/19,0} , E = 0

{1,−4/5,−1/5} , E = 4

and fff eq =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(5/12,1/6,5/12) , E =−4

(1/4,1/2,1/4) , E = 0

(5/12,1/6,5/12) , E = 4

(7)

5.1.2 Finest grained partition

The finest grained partition consider the exact values of magnetization M = {−4,−2,0,2,4}, then the 5× 5
matrices are:

ŴE=−4 =

⎛
⎜⎜⎜⎜⎝

0 1/4 0 0 0
1 1/2 1/2 0 0
0 1/4 0 1/4 0
0 0 1/2 1/2 1
0 0 0 1/4 0

⎞
⎟⎟⎟⎟⎠
, ŴE=0 =

⎛
⎜⎜⎜⎜⎝

0 0 3/38 0 0
0 1/4 4/19 1/4 0
1 1/2 8/19 1/2 1
0 1/4 4/19 1/4 0
0 0 3/38 0 0

⎞
⎟⎟⎟⎟⎠
, ŴE=4 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1/4 0
0 0 1/2 1/2 1
0 1/4 0 1/4 0
1 1/2 1/2 0 0
0 1/4 0 0 0

⎞
⎟⎟⎟⎟⎠
.

The corresponding Eigenvalues and invariant probability distributions are:

λ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{
1, 1

4

(
1+

√
5
)
,− 1

2 ,
1
4

(
1−

√
5
)
,0
}
, E =−4

{
1,− 1

76

(
3+

√
465

)
, 1

76

(√
465−3

)
,0,0

}
, E = 0

{
1,− 1

4

(
1+

√
5
)
,− 1

2 ,
1
4

(√
5−1

)
,0
}
, E = 4

fff eq =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1/12,1/3,1/6,1/3,1/12) , E =−4

(3/76,4/19,1/2,4/19,3/76) , E = 0

(1/12,1/3,1/6,1/3,1/12) E = 4

.(8)

hThe present calculation is recovered in the first column of ŴE=0.
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Despite the evident differences among the coarse and the fine graining partitions, one notices that both partitions
predicts at least qualitatively the same behavior of the equilibrium distribution.

Finally, we emphasize the following remarks:
1. Both partitions are symmetric in the sign of M, further we observe that the equilibrium probability are

symmetric under the transformation M →−M.
2. The equilibrium probability are identically for the cases E = ±4, recovering a hidden symmetry of

the system. However the non-equilibrium behavior is different because the corresponding Eigenvalues have
distinct signs. Notice, however, that this “hidden symmetry” is apparently not observed in numerical simulations
of the Q2R model (see Fig. 1). A more careful inspection of the dynamics indicates that in the cases of
the initial conditions R2 and R4 (Fig. 1), the magnetization is swapping constantly in time, for instance, if
the sequence of values of magnetization for R1 is {M0,M1,M2,M3, . . .}, thus, the sequence for R3 would be
{M0,−M1,M2,−M3, . . .}. Therefore, the temporal average of the magnetization, as computed in Fig. 1, would
be zero for the cases of R3 and R4. Moreover, taking an average but each every two steps one recovers the Ising
bifurcation for positive values of energies. Therefore, the symmetry among positive and negative energies is
recovered in the phase diagram.

3. It is noticed, that there is qualitative difference for distinct energies: for E =−4 the equilibrium distribu-
tion has a maximum for M 
= 0, while its maximum is located at M = 0 for the case E = 0, this is the precursor
of the Ising transition, as observed in Fig. 1.

5.2 Sampling for a 256×256 system size.

We shall consider now a very large system in a lattice with 256 × 256 sites, for this case it is not possible
to perform all possible configuration to build a probability transfer matrix, therefore we consider a reduced
sampling.

In practice for a given p, we use a sample of 104 states, but among them, only a fraction of these states
have exactly the same energy. Then, these states maybe expanded by a factor two by taking changing {x,y} →
{−x,−y}. For instance, for an energy E/N = −1.8082 only 4882 states posses the same total energy. In
this particular case, one notices that the distributions are well separated in two distinct cases with positive and
negative M.

Moreover, the dynamical rule does not allow any transfer of states being at −M into states at +M, hence
the system is well separated in phase space. Mixing is possible only between close magnetization regions. It is
tempted to write

Ŵ =

(
1 0
0 1

)
.

But this partition does not consider all the possible values of M because the interval contained M = 0 is empty.
One may cure, this singular behavior, adding a small number of configuration with zero magnetization, and
using the partition: M > 0, M = 0 and M < 0. But the resulting the Ŵ matrix should be also close to the identity
matrix, therefore any coarse grained distribution fff eq is invariant.

For a larger energy, the magnetization mixes among states having negative, positive, and null values of
magnetization. Below we reproduces a probability transfer matrix for E/N =−0.0466:

Ŵ =

⎛
⎝

1/2 2/5 0
1/2 11/15 1/2
0 2/15 1/2

⎞
⎠ .

The corresponding Eigenvalues and invariant probability distributions are:

λ = {1,1/2,7/30} , fff eq = (0.174,0.652,0.174) . (9)
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One may see, that qualitatively the cases of large and low energies display the same qualitative behavior of
the previous sections.

6 Slow modes and transport coefficients

The approach to equilibrium follows from the already discussed solution ft = Ŵ tf0, which maybe expanded
in terms of the eigenvectors of the Ŵ -matrix, getting ft = ∑K

i=1 αiλ t
i χi. Therefore, the Eigenvalues near the

unity behaves as slow modes. If one defines σi = − logλi one obtain the usual slow mode relaxation: fff t =

∑K
i=1 αie−σitχχχ i. Moreover, the eigenvalues closest to the unity, represents the transport coefficients, which we

shall investigate in the following.
We have consider the case of a 256× 256 system size with an energy E/N = −1.445, which is closest to

the energy of Ising transition therefore big fluctuations are expected. The magnetization runs over the interval
M ∈ [32768,52448]. We have performed a uniform partition with a ΔM = 24, getting a 820×820 matrix, which
we shall not write for obvious reasons. Fig. 3 displays |λi|, ordered by decreasing absolute value, as a function
of its order. As a first sight we have the impression that λi ≈ 1− β i2 (for i < 15) characteristic of a diffusive
mode, however for larger value of i one sees λi ≈ 1− γ i .

The Eigenmodes corresponding to i = 1, to 5 are also plotted showing the usual behavior of a confined
Eigenvalue problem, which does not seem to agree with the diffusive mode.

a)

����������������������������������������
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Fig. 3 Slow modes of the case 256×256 for an energy E/N =−1.445 with a uniform partition in M inside the interval
M ∈ [32768,52448] such a that ΔM = 24 which gives a 820×820 matrix. a) The first 50 Eigenvalues as a function of the
index i. b-e) The first 5 Eigenmodes of the Ŵ matrices. The Eigenmode χ1 corresponds to the invariant probability vector.
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A possible explanation of the behavior of the eigenvalues, λi ≈ 1− γ i, is in agreement with a continuous
limit approximation of the Master equation (5) leading a Fokker-Planck-type equation:

lim
ΔM→0

( fff t+1 − fff t) = (Ŵ − 1̂) fff t → ∂P

∂ t
=

∂
∂M

(β
∂P

∂M
+ γMP). (10)

The slow mode dynamics is provided by the Eigenvalue problem:

−σϕ =
∂

∂M

(
βϕ ′+ γMϕ

)
. (11)

which has a solution

σi = γ i and ϕi = Hi

(
M

√
γ

2β

)
e−

γM2

2β ,

where Hi(x) is the Hermite polynomial of degree i which is a nonnegative integer: i = 0,1,2 . . . . Though, the
behavior of the Eigenvalues is not the good one for i < 15, the behavior of the Eigenmodes seems to be the
adequate. This exploration deserves a more deep study.

7 Conclusions

Though this article presents an overview of the method, we can see that if the partitions are well done, this
coarse graining technique is a powerful tool to reduce the information of whole system in a tractable probability
transfer matrix which simplify the original master equation. One central property of this matrix, is the existence
of an invariant probability distribution vector (the eigenvector with unitary eigenvalue), which is the coarse
grained equilibrium probability distribution of the system. The studied cases agrees, at least qualitatively, with
the numerical simulations.

This study may provide the non-equilibrium properties of the system as the slow mode behavior presented
in Section 6 A deep study of the present overview seems to be necessary, which is in realization.

F.U. acknowledges support from the Programma de Becas de Doctorado CONICYT and SR and ET ac-
knowledge the FONDECYT grants N 1130709 and 1120329 respectively.
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Around the Ising Model

Fernando Mora, Felipe Urbina, Vasco Cortez and Sergio Rica

Abstract This chapter discuss several features and connections arising in a class
of Ising-based models, namely the Glauber-Ising time dependent model, the Q2R
cellular automata, the Schelling model for social segregation, the decision-choice
model for social sciences and economics and finally the bootstrap percolation model
for diseases dissemination. Although all these models share common elements, like
discrete networks and boolean variables, and more important the existence of an
Ising-like transition; there is also an important difference given by their particular
evolution rules. As a result, the above implies the fact that macroscopic variables like
energy and magnetization will show a dependence on the particular model chosen.
To summarize, we will discuss and compare the time dynamics for these variables,
exploring whether they are conserved, strictly decreasing (or increasing) or fluctuat-
ing around a macroscopic equilibrium regime.

1 Introduction

The Ising model, introduced in the early 1920s, by Lenz [1] and Ising [2] as a
thermodynamical model for describing ferromagnetic transitions has evolved as one
of the most prolific theories in the twenty century opening a huge number of new
areas of knowledge (for an historical review see [3]). The importance of the Ising
model raises in its universality and robustness, indeed despite its simplicity, this
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model has been the starting point for the emergence of various subfields in physical
(and social) sciences, namely, phase transitions, renormalisation group theory, spin-
glasses, lattice field theories, etc.

In the current contribution, we shall discuss four distinct applications of Ising-
based models with applications to both statistical mechanics as social sciences. The
first one is devoted to the Glauber-Ising time dependent model with applications to
decision-choice theory in economics and social sciences. In the 60s Glauber [4],
introduced an stochastic time dependent rule to mimic the statistical properties of
the original Ising problem. Glauber’s dynamics has been considered in the context
of social sciences by Brock and Durlauf [5, 6], and, more recently, by Bouchaud [7].

The second topic is Q2R automata model introduced in the 80s by Vichniac [8].
The Q2R1 possess time reversal symmetry, which is at the core of any fundamental
theory in physics. Moreover, the temporal evolution of this automata conserves a
quantitywhich is closely related to the energy of the Isingmodel [9].We are interested
in this model because is a natural starting point for studying the statistical and typical
irreversible behavior of reversible systems. As shown in [10], this system evolves
in an irreversible manner in time towards an “statistical attractor”, moreover the
macroscopic observable, the so called global magnetization, depends on the value of
the initial energy following a law which is exactly the one obtained theoretically by
Onsager [11] and Yang [12], more than 60years ago. Moreover, in [13] it is shown
how thismodel exhibits the same features of Hamiltonian systemswithmany degrees
of freedom, that is, a sensibility to initial conditions, positive Lyapunov exponents,
among others.

The third model that we shall discuss in this article concerns the Schelling model
of social segregation, introduced in the early 70s by Thomas C. Schelling [14–16].
This model became one of the paradigm of an individual-based model in social
science. Schelling’s main contribution is that shows on the formation of a large scale
pattern of segregation as a consequence of purely microscopic rules. More recently,
it has been shown that the Ising energy, which is a good measure of segregation, acts
as a Lyapunov potential of the system is driven, under particular conditions, by a
strictly decreasing energy principle [17].

Finally, we shall discuss a model for dissemination’s disease known as Bootstrap
percolation, first introduced in the late 70s by Chalupa et al. [18]. In this model a
healthy individual may be infected if the majority of its neighbors are infected. On
the other hand an infected individual never recovers, so it remains infected forever.
This model has been used as a model for disease’s propagation. One of the most
important questions arising is the determination of the critical number of infected
individuals to contamine the whole population.

The paper is organized as follows, in Sect. 2, some common features, as well as,
the precise rules for each particular model are explicitly described. Next, in Sect. 3
the main dynamical behavior, the salient properties and the phase transitions are
shown and explained, for each of them. Finally, we conclude.

1Q by four, quatre, in french, 2 by two steps automata rule as explicitly written below, and R by
reversible.
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2 Ising-Based Models

2.1 Generalities

2.1.1 The Lattice and the Neighborhood

Allmodels discussed below, display similar features, the systemconsisting of a lattice
with N � 1 nodes, in which each node, k, may take a binary value Sk(t) = ±1 at a
given time. Each node k on the lattice interacts, in general, with all other individuals,
with an interaction coefficient Jik (i denotes an arbitrary node). But in particular, a
node, k, may interact only with a finite neighborhood denoted by Vk . The number of
neighbors for site k, |Vk |, is the total number of non zero Jik for each node. In Fig. 1
we show, as an example, four possible lattice configurations.

2.1.2 The “Energy” and the “Magnetization”

We define the macroscopic observables of the system, by analogy with the original
Ising model of ferromagnetism, as follows:

E[{S}] = −1

2

∑
i,k

Jik Si (t)Sk(t) , (1)

(a) (b)

(c)
(d)

xk

xk

xk

xk

Fig. 1 Examples of lattices and neighborhoods.We illustrate explicitly: a an arbitrary networkwith
a random number of neighborhoods; and three periodic regular lattices in two space dimensions:
b a square lattice with a von-Neuman neighborhood of 4 individuals (the original lattice of the
Ising model with the nearest neighborhood); c a square lattice with a Moore neighborhood of 8
individuals, and d a hexagonal lattice with 6 neighborhoods
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M[{S}] =
N∑

k=1

Sk(t). (2)

These quantities will be the pertinent observables, and we shall use them to classify
the distinct cases that we will be described in the next sections.

2.2 The Time-Dependent Glauber-Ising Model

Glauber [4], in the 60s, introduced a dynamical model for the study of the Ising
model. The rule governing Glauber’s model is the following:

Let, the local magnetization at the site k and at a time t , be:

Uk(t) = B +
∑

i

Jik Si (t), (3)

with B being an external magnetic field. Then, the spin’s value at the next time step,
t + 1, will be

Sk(t + 1) = sgn(Uk(t)), (4)

that is Sk(t + 1) = +1 if Uk(t) ≥ 0 and Sk(t + 1) = −1 if Uk(t) < 0. We call (4)
the deterministic rule. In probability language, if Uk(t) ≥ 0, then Sk(t + 1) would
be +1 with probability 1, and it would be −1 with probability 0. This rule is updated
in parallel fashion.

Next, this deterministic rule may be modified by a probabilistic rule, in the fol-
lowing way:

Sk(t + 1) =
⎧
⎨
⎩

+1 with probability p = 1
1+e−βUk (t)

−1 with probability p = 1
1+eβUk (t)

(5)

Notice that in the limit β → ∞ one recovers the deterministic behavior (4), while
in the limit β → 0 one reaches a completely random (binomial) dynamics regardless
of the value of U , that is Sk(t + 1) would be +1 with probability 1/2.

The Glauber rule is indeed a Markov chain which manifests, in a perfect way,
the statistical properties of the Ising phase transition for the case of Von-Neuman
neighbourhoods, and it also agrees with the mean field approximation for the case of
a large number of neighbours. Finally, nowadays the Glauber dynamics is the starting
point for numerical simulations of spin glasses systems with random values for the
Jik coefficients.

85



Around the Ising Model 333

2.2.1 Random Decision-Choice Model

Let us consider now a random choice model [5–7] in the context of social sciences.
An individual takes a choice based on a combination of decision quantities, namely
an individual “decision parameter” fk , a “global decision” or “public information”
parameter F(t) (which could be included in the previous individual decision para-
meter) and a “social pressure”

∑
i Jik Si (t).

Next take,2 Uk(t) = fk+F(t)+∑
i Jik Si (t), and follow theGlauber deterministic

dynamics (4) or more generally the Glauber random dynamics (5).
Due to both, the Ising-like feature as theGlauber Dynamics evolution rule, a phase

transition is known to appear. This transition favors the decision into one or another
of the two options of the binary variable.

2.3 The Q2R Automata

The Q2R rule considers the following two-step rule which is updated in parallel [8]3:

Sk(t + 1) = Sk(t − 1) ×
⎧⎨
⎩

+1 if
∑

i Jik Si (t) �= 0

-1 if
∑

i Jik Si (t) = 0
(6)

Naturally, it is possible to add, without any difficulty, an external magnetic field
B. However, some caution should be taken into account: the model works if Uk(t) =
B +∑

i Jik Si (t),may vanish, therefore, B and the Jik factors should be integers. For
instance in the case of a finite neighborhood, B + |Vk | should be an even number.

The rule (6) is explicitly invariant under a time reversal transformation t + 1 ↔
t − 1. Moreover, as shown by Pomeau [9], the following quantity, that we may call
an energy, despite not being exactly the energy (1)

E[{S(t), S(t − 1)}] = −1

2

∑
i,k

Jik Sk(t)Si (t − 1), (7)

is preserved under the dynamics defined by the Q2R rule (6). Moreover, the energy
is bounded by −2N ≤ E ≤ 2N .

The rule (6) is complemented with an initial condition Sk(t = 0) and Sk(t = 1)
that will be described more precisely in the next section.

2The so called “perceive overall incentive agent function”, by Bouchaud [7].
3This two-step rule may be naturally re-written as a one-step rule with the aid of an auxiliary
dynamical variable [9].
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2.4 Schelling Model for Social Segregation

Schelling model, is also characterized by a binary variable Sk which may take values
+1 and −1. We shall say that an individual Sk at the node k is “happy” at his site,
if and only if, there are less than θk neighbors at an opposite state. θk is a tolerance
parameter that depends in principle on the node and, it may take all possibles integer
values, such that 0 < θk < |Vk | (we exclude the cases θk = 0 and θk = |Vk | from
our analysis). The satisfaction criterion reads4

An individual Sk is unhappy at the node k if and only if:

∑
i∈Vk

Si =
⎧⎨
⎩

|Vk | − 2nk(−1) ≤ |Vk | − 2θk, if Sk = +1

2nk(−1) − |Vk | ≥ 2θk − |Vk |, if Sk = −1.
(8)

Here nk(+1) is the number of neighbors of Sk that are in the state+1; and, nk(−1)
the number of neighbors of Sk in the state −1, naturally nk(+1) + nk(−1) = |Vk |.

Having labeled all different un-happy individuals, one takes randomly two of
them in opposite states (one +1, and one −1) and exchanges them. Even when this is
not exactly the original Schelling’s rule, the present Schelling’s protocol is a simpler
one. In any case, it can be modified in a straightforward way to include for example
vacancies [19, 20], different probabilities of exchange [19], multiple states variables
[21], etc.

If k and l are these random nodes, then the evolution rules:

Sk(t) → Sk(t + 1) = −Sk(t), Sl(t) → Sl(t + 1) = −Sl(t)

and for all other nodes i �= k & l remain unchanged Si (t) → Si (t +1) = Si (t).

The protocol is iterated in time forever or until the instant when one state does
not have any unhappy individuals to be exchanged.

Notice, that Schelling criteria (8) is deterministic, however the exchange is a ran-
dom process, therefore two initial configurations will not display the same behavior
in detail, but they will evolve to the same statistical attractor [22].

4The criteria (8)may be unified in a single criteria [17] (multiplying both sides of the two inequalities
by Sk ): an individual Sk is unhappy at the node k if , and only if, Sk

∑
i∈Vk

Si ≤ |Vk | − 2θk , which
is a kind of energy density instead of the threshold criteria found in Glauber dynamics (4).
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Schelling’s protocol, defined above, has a remarkable property: if θk >
|Vk |
2 then

any exchange k ↔ l, will always decrease the energy

E[{S}] = −1

2

∑
k

∑
i∈Vk

Si (t)Sk(t). (9)

The energy (9) follows from (1), whenever Jik = 1 for neighbors and Jik = 0
otherwise.

For a proof, we refer to [17]. We shall only add the following remark: if θk >
|Vk |
2 ,

then the evolution necessarily stops in finite time. This is because the energy (9) is
bounded from below by E0 = − 1

2

∑N
k=1 |Vk | and because the energy (1) decreases

strictly. On the other hand, for θk <
|Vk |
2 , the energy may increase or decrease after

an exchange indistinctly.

2.5 Bootstrap Percolation

We shall consider the problem of bootstrap percolation for a given lattice [18]. As
in the previous models, each node k interacts with |Vk | neighbors, the neighborhood
defined by the set Vk . As before the state, Sk may take values +1 and −1 depending
on if it is “infected” or not. At a given “time” the state Sk(t) evolves into Sk(t + 1)
under the following parallel rule: if a site is not infected, and if the majority of its
neighbors are infected, then the site becomes infected [23]. On the other hand, if the
site is already infected it keeps its infected state.

Summarizing, the evolution rule, which is updated in parallel, may be written in
the following general way:

if Sk(t) = −1 and
∑

k

Sk(t) > 0, then Sk(t + 1) = +1, (10)

otherwise, if Sk(t) = 1 then Sk(t + 1) = 1.

From the dynamics it follows directly that the energy (9) decreases in time, E(t +
1) ≤ E(t), as well as the magnetization increases in time: M(t + 1) ≥ M(t). As in
the case of the Schellingmodel, because the energy is a strictly decreasing functional,
and because it is bounded from below in a finite network, then the dynamics always
stops in finite time.

Finally, let us comment that a problem that has increased in interest in recent times
deals with the question of how the total infection depends on the initial configuration
which is randomly distributed and such that a site will be at the state Sk = +1 with
a probability p [24].
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Table 1 Recapitulation of the four above mentioned models, and its main conservation properties

Dynamics Evolution criteria Energy Magnetisation

Glauber sgn(B +∑
i Jik Si (t))

Not conserved Not conserved

Q2R
∑

i Jik Si (t) = 0 Conserved Not conserved

Schelling sgn(Sk(t))
∑

i∈Vk
Si (t) ≤ |Vk | − 2θk

Not conserveda Conserved

Bootstrap
∑

i∈Vk
Si (t) > 0 ΔE < 0 ΔM > 0

aIf θk > |Vk |/2 then ΔE < 0

Naturally, if initially p ≈ 1/2, then every site has in average the same number of
Sk = +1 states and Sk = −1 in its neighborhood, then the system would percolate
almost in one step. However, as p decreases, one can define a probability, P(p),
which is the probability that the system would percolate at the end of the evolution
process. At the end this probability can be numerically determined.

2.6 Recapitulation

The afore mentioned models have in common a threshold criteria (4), (6), (8), and
(10) the subsequent dynamics follows different rules. Therefore one should expect
distinct properties.

The Glauber Dynamics does not preserve neither the energy or magnetization,
however the Q2R dynamics (Sect. 2.3) does preserve only the energy but does not
preserve the magnetization. The Schelling model (Sect. 2.4) does preserve only the
magnetization, but if θk > |Vk |/2 the system’s energy is strictly a decreasing function.
Finally, in the infection model of Sect. 2.5, the energy strictly decreases whereas the
magnetization is an increasing function of time (Table1).

3 Ising Patterns, Transitions, and Dynamical Behavior

In this section, we shall roughly describe the essential phenomenology of the Ising-
like models and rules described in the previous section, whether they are governed
(or not) by the rules of conservation of magnetization energy.

3.1 Glauber and Decision-Choice Model Dynamics

The time dependentGlauber-Isingmodel shows a very rich phenomenology.As such,
the model’s behavior has been explored using mean field approximation (the Curie-
Weiss law) as well as by direct simulations of the rule (5). Here our macroscopic
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Fig. 2 Snapshots of the patterns for theGlauber-Isingmodel. The simulation is for a N = 256×256
periodic lattice with von Neuman neighborhood. Moreover we take fk = 0 and F = 0. The
parameter of “irrationality” and the magnetization averages are, respectively: a corresponds to a
paramagnetic phase for β = 0.53 and 〈M〉 /N = 0.0006; b a critical phase for β = 0.82 and
〈M〉 /N = 0.02; and c corresponds to a ferromagnetic phase β = 1.8, and 〈M〉 /N = 0.39

(a) (b)

0.5

-0.5

0

1

-1
0.5 1 1.5

0.5

-0.5

0

1

-1
0.5 1 1.5

Fig. 3 Average magnetization 〈M〉 versus β. The average are taken from long time simulations of
approximately 20000 time steps. In both cases the random external field is settled to zero fk = 0.
a Case of F = 0; and b Cases of F = ±0.1 and F = 0.2

observable is the total magnetization per site, namely M(t)/N and were M(t) is
defined in equation (2). In what it follows, we will only show results for the direct
simulation of the Glauber-Ising model (4) and we shall use the terminology of social
sciences [7]. In Fig. 2 we show three distinct states characterized by different values
of the parameter of “irrationality” β,5 and a null value for the public information
parameter F(t).

In Fig. 3 we show two different figures for the meanmagnetization 〈M〉 /N versus
the irrationality parameter β, divided into two groups depending on the non-zero or
null value for the public information parameter F(t). Each point, was calculated for
a total of approximately 2 × 104 time steps. We can readily observe the appearance
of a bifurcation for the case F = 0 and β greater than βc = 0.8.

Therefore, the time dependent Glauber-Ising model displays a transition from a
paramagnetic to a ferromagnetic phase for βc ≈ 0.8 which is in agreement with the
critical threshold value of the Ising model, βc = log(1 + √

2) ≈ 0.881 . . .

5In statistical physics, β is the inverse of the thermodynamical temperature, β ∼ 1/T .
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Fig. 4 Three types of magnetization dynamics for a running time of T = 3 × 104 time steps, and
considering three different values of energy. a Corresponds to an initial energy E/N = −1.50, b
corresponds to an initial energy E/N = −1.39and c corresponds to an initial energy E/N = −1.08.
The three figures show the fluctuations in the macroscopic observable M(t)

3.2 Q2R Dynamics

We shall now present the dynamics of the Q2R model for the case of von Neuman
vicinity (the coupling interaction Jik = 1 for the four closest neighbors), which is
the original Q2R cellular automata [8].

The time evolution of magnetization, given an initial energy value E/N , provides
a direct observation of the spin’s dynamics and fluctuations. In what it follows, we
will base our results and analysis taking a periodic grid of size N = 256 × 256.

When the initial energy value is E/N = −1.50, which refers to Fig. 4a, it can
be seen that the system’s dynamics fluctuates without significative changes in the
magnetization’s value. This means that the overall set of spins are oriented in a
preferred direction. This is known as a ferromagnetic state. If we raise the initial
energy value and take E/N = −1.39, which corresponds to Fig. 4b, the dynamics
abruptly fluctuates because of the closeness to the critical energy value: Ec/N [10].
Finally, if the initial value of the energy is greater than in the previous cases, e.g.
E/N = −1.08, Fig. 4c shows how the dynamics of magnetization decays reaching
a zero mean value 〈M〉 ≈ 0.

Similarly, Fig. 5 shows some characteristic snapshots of the spin field patterns at a
given time for the same energy per site.When the energy value is E/N = −1.50 (see
Fig. 5a), it can be seen how the spins are organized with a well definedmagnetization,
namely Sk = +1 or Sk = −1. This is a ferromagnetic phase. However, when the
initial energyvalue is E/N = −1.39 (close to the critical energy), as shown inFig. 5b,
the system generates patterns characterized bywell defined clusters of states. Finally,
for an energy E/N = −1.08 (see Fig. 5c) the system shows an homogeneous state
with the spin distributed more or less randomly, which characterizes a paramagnetic
phase.

Also it can be shown that the average magnetization 〈M〉 depends critically on
the initial energy, E/N , of the system (Fig. 6).6

6Q2R is a micro canonical description of the Ising transition, therefore we use the energy in absence
of any temperature. In [10] it is shown the excellent agreement among the Q2R bifurcation diagram
with the Ising thermodynamical transition.
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Fig. 5 Snapshots of spin structure at T = 3.5×104 considering three initial values. a Corresponds
to an initial energy E/N = −1.50 and a magnetization M/N = 0.79, b corresponds to an initial
energy E/N = −1.39 (which is close to the transition energy E/N = −√

2) and M/N = 0.455;
and c corresponds to an initial energy E/N = −1.08 and M/N = 0.012

Fig. 6 Phase transition
diagram for the average
Magnetization 〈M〉 versus
initial energy E/N , for a
grid size N = 256 × 256
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Finally, we can state three fundamental features from the above phase diagram.
First, there exists a zone in which the system stays into a ferromagnetic state when
the value of the energy is lower than the critical energy E < Ec. Secondly, there
is a second order phase transition at Ec/N = −√

2 and it is formally equivalent
to the Ising critical temperature [10]. Third, when the initial energy value is greater
than the critical energy E > Ec, the system presents a paramagnetic phase, with a
magnetization value 〈M〉 = 0.

3.3 Schelling Dynamics

We shall characterize the dynamics of Schelling model for the particular case in
which the system is a two dimensional periodic lattice, and each site possess the
same neighborhood consisting in the |V | closest individuals. We shall consider also
that the parameter θk is uniform, that is, θk = θ .
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Fig. 7 Schelling’s patterns for various satisfaction parameter θ in a square periodic lattice of
N = 256 nodes. The vicinity is uniform and contains |V | = 20 elements. a θ = 5; b θ = 6;
c θ = 9; d θ = 10 (eventually this case the two spots observed merges into a single one, this
coalescence dynamics, however, it happens after a longtime); e θ = 11 and f θ = 15, are two
cases whenever the energy is a strictly decreasing function so the dynamics stops in finite time,
in the former case this happens after a time so segregation is possible, however in the later case
the dynamics stops shortly after the Schelling algorithm started. For θ = 15 we say that this is a
frustrated dynamics, because the system cannot reach the ground state energy because the dynamics
stops after one of the population is completely happy

Figure7 displays an example of typical patterns arising in the Schelling’s model.
As it can be observed, the dynamics depends critically on the value of the tolerance
parameter θ , defined above.More precisely, if θ is larger or smaller than θc1 = |V |/4,
θc = |V |/2, and θc2 = 3|V |/4. The initial state was chosen randomlywith a binomial
distribution, that is Sk(t = 0) was +1 with probability 1/2 and −1 with the same
probability. Hence, the total magnetization is M(t = 0) ≈ 0, and it is kept fixed
during the evolution.

The simulation shown in Fig. 7, corresponds to a Schelling rule with a vicinity of
|V | = 20 elements. Clearly three different cases can be distinguished, and at least
three transition points, namely θc1 = |V |/4, θc = |V |/2, and θc2 = 3|V |/4. For 1 <

θ ≤ |V |/4 (see Fig. 7a) one observes a non-segregated pattern, the states Sk = ±1 are
swapping, more or less randomly in the system, without a formation of any kind of
large scale structure. In a coarse graining scale, for instance, the scale of the vicinity,
the coarse-grained magnetization, namely, m = 1

|V |
∑

i∈Vk
Si (t) is zero everywhere,
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as well as the energy.7 In this situation, it is tempting to make an analogy with the
Ising paramagnetic phase. For |V |/4 < θ ≤ |V |/2, one observes how a segregation
pattern arises (see Fig. 7b, c). More important the coarse-grained magnetization is
locally non-zero, and the pattern presents domain walls, which are characteristic of
a ferromagnetic phase in the Ising-like terminology. For |V |/2 < θ ≤ 3|V |/4, one
observes also segregation (see Fig. 7e), but the dynamics stops in a finite time. The
final state is a quenched disordered phase for which one may conjecture an analogy
with a “spin glass” phase, and the appearance of a kind of long-range order. The case
θ = 3|V |/4 in (see Fig. 7f) it is interesting because, although the are some islands
of segregation, the system also recovers its original heterogeneity, with almost a null
coarse-grained magnetization m.

3.4 Bootstrap Percolation

The spin dynamics for the case of Bootstrap percolation of Sect. 2.5 is always char-
acterized by an energy decreasing principle, moreover because a +1 spin never flips
to a −1, the magnetization is mandated to increase up to a constant value because of
the impossibility to infect more individuals, or simply because the system has been
fully percolated by the +1 spin states.

As said in Sect. 2.5, we shall consider a random initial state with a fraction p
of the spins at the state Sk = +1 (that is, a fraction p of the population would be
infected).

It is observed, that for a moderately large value of p, say p ≈ 1/2, the sys-
tem becomes unstable very fast, percolating the Sk = +1 state everywhere almost
instantaneously.

However, as one decreases p, the system presents a well defined scenario. Figure8
shows the typical evolution of a percolation pattern in time. More precisely, the
system nucleates bubbles of infected states (Sk = +1) and two scenarios are possible,
either these bubbles continues to grow or they stop (compare Fig. 8b, c). In analogy
with the instability of a first order phase transition, it should exist a critical radius of
nucleation that depends explicitly on p.

This critical radius of nucleation maybe estimated in the limit of large vicinity, in
other words, in the range of validity of the mean field approximation. Let be p the
fraction of infected sites initially distributed randomly in the system and a the radius
of the vicinity (πa2 = |V |). We shall add an infection bubble with a radius R (see
Fig. 9a). A Sk = −1 state in the boundary of the infected circle will become infected
if

∑
k Sk(t) = (2p −1)(πr2 − A(R))+ A(R) > 0, where A(R) is the surface of the

portion of the circle inside the infection bubble (see Fig. 9b). Therefore, the bubble
will infect neighbors and will propagate into the system, if

7Notice that, as already said, the total magnetization is constant in the Schelling model. Therefore
we cannot match the Schelling transitions observed here with the phase transition for the cases of
the Glauber-Ising and the Q2R models.
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Fig. 8 Bootstrap percolation’s patterns at six different time steps. The network is a square periodic
lattice of N = 2562 sites with a uniform vicinity of |V | = 24 sites. a Display the initial random
state with an initial fraction 0.2 of Sk = +1 (that is, a given site is +1 with probability 0.2, and
−1 with probability 0.8); In b one observes the nucleation of bubbles, which eventually would
propagate the +1 state over the random phase; In c one observes that some infected bubbles have
not reach the critical size and they do not propagate; however, in d big bubbles invade the system
transforming the interface in a front propagation over the whole system (e) and (f)

Fig. 9 a Scheme for the
mean field estimation of the
critical radius of infection.
The gray region represents
the random initial data with a
fraction p of +1. b Details of
the geometry for the
calculation of A(R)

R
A(R)

(a) (b)
a

R

A(R)

πa2
>

1 − 2p

2(1 − p)
. (11)

The surface A(R) follows from a direct geometrical calculation. In the large R/a
limit, one gets

A(R)

πa2
≈ 1

2
− a

3π R
+ O(R−3),
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Fig. 10 a Critical radius of nucleation R/a as a function of p. As expected as p → 1/2 the critical
radius is zero, while as p → 0 the critical radius diverges. The points correspond to the numerical
simulations for different values of the vicinity size: |V | = {24, 44, 68, 144, 304, 696} as indicated
in the figure. b Estimation of the lower bound of the probability P(p) of having a critical nucleation
bubble of infected states, for |V | = 8, |V | = 20 and |V | = 68. One notices that this probability
takes-off around a precise value of p

therefore, one concludes that the critical radius of nucleation scales as

Rc

a
≈ 2(1 − p)

3πp
.

Figure10 shows a numerical study of the nucleation radius, for various vicinity
sizes, |V |, as a function of p. Moreover the figure also presents the mean field
estimation by an explicit geometrical calculation of the surface A(R) and using the
critical condition (11). One sees that the mean field approach matches perfectly with
the data in the large |V | limit.

However, a question remains open: what is the probability to obtain, ab-initio a
bubble with a radius larger than Rc? This probability seems to be very small, because
it is proportional to the probability to obtain π R2

c sates +1 all together, that is

Pbubble ≈ pπ R2
c = p|V |(Rc/a)2 ∼ p

|V | 4(1−p)2

9π2 p2 ,

with Rc/a the function of p plotted in Fig. 10. Although, this probability P(p) is
quite small, it is a lower bound for the problem of Bootstrap percolation. If, initially, a
bubble has a radius greater than Rc(p), then the system percolates, and the nucleation
bubblemay not initially exist, but it may be built solely by the evolution, this provides
a better estimation of the probability P(p) of percolation.

4 Discussion

We have shown how different models amalgamate their underlying behavior under
the common principle of the Ising-based models: Phase transitions, Bifurcations and
Phase Diagrams and most important, the existence of a core principle, e.g., energy
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minimization which appears to be a robust feature of these models and which would
require a deeper consideration.

It is a remarkable fact, however, how despite a continued interest over the last
century, the Ising model continues to fascinate and amaze us, not only on it’s original
context, but also in some other areas of knowledge were it has been applied. The
“paramagnetic-ferromagnetic” transition can be recovered in all models described
here,with deeper consequences, for example, in thefield of humanbehavior, specially
social sciences. Here we can ask ourselves for example: can the sudden changes of
opinion before an election or the choice of a product or racial segregation be related to
the basic physics of the Isingmodel? Evenmore, the existence of an energy principle,
something completely excluded and extraneous to the field of Social Sciences, seems
to be the main thread behind, for studying and trying to understand human and social
behavior. Certainly, delving deeper on this energy principle would require more
attention and research. Finally we conclude by asking, Can we have some hope, in a
near future and in the context of Social Science, of being able to develop predictive
tools for studying and understanding better the human behavior?
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A master equation approach is applied to a reversible and conservative cellular automaton model (Q2R). The
Q2R model is a dynamical variation of the Ising model for ferromagnetism that possesses quite a rich and
complex dynamics. The configuration space is composed of a huge number of cycles with exponentially long
periods. Following Nicolis and Nicolis [G. Nicolis and C. Nicolis, Phys. Rev. A 38, 427 (1988)], a coarse-graining
approach is applied to the time series of the total magnetization, leading to a master equation that governs the
macroscopic irreversible dynamics of the Q2R automata. The methodology is replicated for various lattice sizes.
In the case of small systems, we show that the master equation leads to a tractable probability transfer matrix
of moderate size, which provides a master equation for a coarse-grained probability distribution. The method is
validated and some explicit examples are discussed.

DOI: 10.1103/PhysRevE.94.062140

I. INTRODUCTION

In statistical physics one basically considers a large set of
reversible and conservative ordinary differential equations for
the description of particle dynamics. The temporal evolution
for this cumbersome problem, even for a modest number
of particles, requires a statistical description that introduces
the concept of a probability distribution function for the
phase space of the system. Irreversibility, equilibrium, and,
more importantly, nonequilibrium properties emerge from this
probability conception of systems (with a large number of
degrees of freedom) and its deterministic evolution. Briefly, the
methodology reduces (under some assumptions) to a kinetic
description that displays an irreversible behavior to equilib-
rium observed in macroscopic systems. The assumptions for
this approach are (i) macroscopically, a system is described
by a finite set of observables, (ii) the robust instability of the
microscopic motions, which is at the basis of the sensitivity
to initial conditions and the ergodic assumption, and (iii) a
stosszahlansatz that introduces explicitly a broken before-after
symmetry for the evolution of the probability distribution.

Nicolis et al. [1,2] introduced a systematic coarse-graining
approach for the treatment of the macroscopical variables.
As a consequence, this coarse graining breaks naturally the
past-future symmetry in time, leading to an irreversible master
equation for a reduced probability distribution function of the
system. In the current paper we apply this systematic approach
to conservative and explicit reversible cellular automata.
In particular, we consider the Q2R model, introduced by
Vichniac [3], which is a cellular automaton that runs on a
two-dimensional grid of finite size and is reversible in a
physical sense, that is, not only is the automaton rule invertible,
but the backward rule reads exactly the same as the forward
one. Moreover, it was shown by Pomeau [4] that the Q2R
automaton possesses a conserved energy like quantity.

The main reason to apply the coarse-graining approach to a
cellular automaton instead of to a coupled system of ordinary
differential equations is because a cellular automaton is a
discrete model with Boolean entities as microscopic variables,
thus, the system is numerically reversible and conservative. In
consequence, Q2R seems to be a good benchmark to test the
principles of statistical physics. However, the phase space is

finite, hence the dynamical system only possesses fixed points
and periodic orbits; therefore it cannot be ergodic, at least
in the usual sense of continuous dynamics. Nevertheless, for
large enough systems, the phase space becomes huge and the
periodic orbits may be, as we show, exponentially long, thus, in
practice, of infinite period. Further, if the initial state is random,
the temporal behavior may be quite random and it possesses
many properties of chaotic systems, such as sensitivity to initial
conditions and mixing. For any purpose, the observation of
a short periodic orbit is really improbable for large enough
systems with random initial conditions. In general, there is a
huge number of initial conditions that are almost ergodic.

By “almost ergodic” we mean that the original Q2R system
is formally not ergodic, because it only possesses finite
periodic orbits. Although finite, these periodic orbits may be
exponentially long, so an arbitrary initial condition explores
vastly the phase space, validating the equivalence of ensemble
and temporal averages. Indeed, numerical studies confirm that
the premises of statistical physics are valid, in particular,
observables may be computed using standard methods of
statistical physics. We will show that temporal averages of
a macroscopic quantity provide the same information as the
master equation for the coarse-grained distribution functions.

The study of the dynamics and properties of the Q2R
model has had a long history. Soon after the seminal works of
Vichniac [3] and Pomeau [4], Herrmann [5] implemented the
Q2R algorithm to study the two-dimensional Ising model in the
frame of the microcanonical ensemble. He studied the global
magnetization, obtaining an excellent representation for the
magnetization as a function of the initial conserved energy,
displaying a coherent picture for the phase transition of the
Ising model. Later, Herrmann et al. [6] studied numerically the
probability to reach an infinitely long period for some energies.
Moreover, if the energy is large enough, this probability
tends to unity [6]. Next Takesue [7] focused on the possible
realization of statistical mechanics for reversible cellular
automata. His studies concerned explicitly all classes of rules
in the one-dimensional case, the Q2R being only a special
case. However, the Q2R model (90R in his terminology) is the
analog of an ideal gas of particles with speeds +1 or −1, a
system that cannot reach equilibrium in practice. However, it is

2470-0045/2016/94(6)/062140(9) 062140-1 ©2016 American Physical Society
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ergodic only in thermodynamical equilibrium. More recently,
in Ref. [8], Goles and Rica studied numerically the irreversible
behavior and the existence of a spontaneous transition from a
noncoherent state to a coherent state.

The present article is organized as follows. The Q2R model,
its main features, and findings are presented in Sec. II, which
is subdivided as follows: We briefly report the numerical
studies of Ref. [8] in Sec. II A; the phase-space properties,
in particular some results on the distribution of periods of the
dynamics, are reported in Sec. II B; the sensitivity to initial
conditions is discussed in Sec. II C; and the scope of the paper
is presented in Sec. II D. Section III introduces the notion of a
master equation for the statistical description of the dynamics.
In Sec. IV we provide some precise examples, where a
coarse graining is realized, in order to get an adequate and
tractable master equation. We provide an exhaustive validation
of the technique and we discuss different coarse graining
over the phase space. Finally, we summarize in Sec. V.

II. THE Q2R MODEL

For simplicity, we consider a regular two-dimensional
lattice with N = L2 nodes, in which each node is only seen by
its four closest neighbors (the von Neumann neighborhood);
we use periodic boundary conditions. Each node k possesses
a discrete value xk that may take a value +1 or −1. The Q2R
model, introduced by Vichniac [3], is based upon the following
two-step rule:

xt+1
k = xt−1

k φ

⎛
⎝∑

i∈Vk

xt
i

⎞
⎠,

where the function φ is such that φ(s = 0) = −1 and φ(s) =
+1 if s �= 0. In the sum Vk denotes the von Neumann neighbor
of the site k. The reversibility follows directly from the inverse
relation xt−1

k = xt+1
k φ(

∑
i∈Vk

xt
i ), which is the backward rule

[notice that φ(
∑

i∈Vk
xt

i )
2 = 1 in all cases].

This two-step rule may be naturally rewritten as a one-step
rule by introducing a second dynamical variable [4]

yt+1
k = xt

k, xt+1
k = yt

kφ

⎛
⎝∑

i∈Vk

xt
i

⎞
⎠. (1)

The rule (1) is complemented with the initial condition xt=0
k

and yt=0
k .

As shown by Pomeau [4], the energy

E[{xt ,yt }] = −1

2

∑
〈i,k〉

xt
ky

t
i (2)

is conserved, E[{xt ,yt }] = E[{xt=0,yt=0}], under the dynam-
ics defined by the Q2R rule (1). Moreover, the energy is
bounded by −2N � E � 2N .

Despite the existence of an energylike quantity, it is not
possible to speak about a Hamiltonian for a discrete dynamics
because the variables xt and yt and the energy (2) are discrete
quantities [4]. Moreover, supported by the existence of a large
number of periodic orbits, it is believed that Q2R possesses
a large number of other invariants. An example of additional
conserved quantities are the staggered invariants [9]. Indeed,

for a square periodic lattice of even size L (N = L2), the full
lattice may be divided into two sublattices as follows. We
denote by kx and ky the indices of the full square. Then we
define the W sublattice by all points such that kx + ky is an even
number, while the B lattice is characterized by the condition
kx + ky being an odd number. (In other words, these sublattices
represent the white and black fields in the chessboard.) Then
we define

EW [{xt ,yt }] = −1

2

∑
kx+ky even

xt
k

∑
i∈Vk

yt
i ,

EB[{xt ,yt }] = −1

2

∑
kx+ky odd

xt
k

∑
i∈Vk

yt
i .

The conserved energy (2) may be rewritten as E[{xt ,yt }] =
EW [{xt ,yt }] + EB[{xt ,yt }]. Further,

J [{xt ,yt }] = (−1)t (EW [{xt ,yt }] − EB[{xt ,yt }]) (3)

is also an invariant, i.e., J [{xt ,yt }] = J [{xt=0,yt=0}]. This
extra invariant splits the subspace of constant E into a subset of
constant E and constant J . The role of this staggered invariant
in the macroscopic behavior will be not be investigated in the
present work.

A. Long-time dynamics of the Q2R cellular automata

Numerical simulations of the Q2R model in two space
dimensions and for large system sizes, e.g., N = 256 × 256,
and random initial conditions show that the dynamics displays
a fluctuating spatiotemporal pattern showing regions with
states +1 and sectors with states −1, as well as zones
with chessboardlike patterns [8]. The full patterns will be
characterized by the global magnetization

M(t) = M[{xt }] =
∑

k

xt
k. (4)

Naturally, the function M is restricted to the set {−N,−N +
2, . . . ,N − 2,N}, therefore there are N + 1 possible states of
magnetization.

A detailed characterization of the evolution, as well as the
fluctuations, for the magnetization has been treated in detail
in Ref. [8]. Briefly, after a transient the average magnetization
depends mainly on the initial energy. If the energy is low, one
sees that the average magnetization evolves slowly in time
to an equilibrium state with an almost constant value plus
weak fluctuations. For larger energies, the fluctuations play
an important role. One may observe that the system is in an
almost stable state, but then suddenly jumps into a metastable
state with zero average magnetization, and then jumps into an
opposite magnetization state [8].

The plot of the temporal average for the global magnetiza-
tion versus the energy is reported in Fig. 1. One can see that the
magnetization spontaneously increases below a critical energy
per site around Ec/N = −1.4, which is close to the critical
energy of the Ising model Ec/N = −√

2 [10,11]. Moreover,
in Refs. [5,8] the magnetization is compared as a function of
the internal energy of the system, showing a close agreement
with numerical values.
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FIG. 1. Magnetization curves as a function of initial energy for
three different system sizes N = 8 × 8, N = 16 × 16, and N =
256 × 256, as indicated in the legend. Each point corresponds to
a different initial condition; in this case we sample different energies.
As it can be noticed, there is a finite system dependence on the critical
behavior of the system. Indeed, the critical behavior disappears
for small system sizes N = 8 × 8 and N = 16 × 16, whereas for
large systems the magnetization curve reaches a critical behavior.
The continuous line represents the well known statistical mechanics
calculation for the Ising model M/N ≈ 25/16(

√
2 + E/N )1/8.

We emphasize that the main feature of the Q2R automaton
is that it shows a deterministic microcanonical dynamics.
Moreover, as shown in Fig. 1, for larger size systems, the results
agree with the thermodynamical calculations in an infinite
system size [10,11]. On the other hand, other probabilistic
evolutions, such as Monte Carlo simulations or Glauber
dynamics [12], deal with a spin system in contact with a
thermal bath, that is, in canonical equilibrium. However, as
expected, both methodologies share the same macroscopic
equilibrium.

B. Phase space

The configuration space of all states is defined through
all possible values of the state {x,y}. The resulting space is
composed of the 22N vertices of a 2N -dimensional hypercube.
The smallest possible system corresponds to an N = 2 × 2
lattice. In this case there are 22×4 = 28 = 256 states and the
phase space is a hypercube in dimension 8. However, the
dynamics is too simple; it contains cycles of period 4 at most.
The phase space for a 4 × 4 system is the largest possible one
that can be studied exactly, case by case. In this case the system
possesses 22×16 = 232 states and it contains a rich variety
of cycles [13]. This case will be studied deeply as a good
benchmark for conjectures in larger-dimensional systems.

As an example, from this case, it is observed that the total
number of cycles n(T ,E) of period T and energy E would be
bounded by [14]

n(T ,E) <
1

T
22Ne−α|E| ∼ e2N ln 2−α|E|.

From the data one has that for 3 × 3 and 4 × 4, α ≈ 0.6,
but this value varies as the lattice size increases. Here one
notices a dramatic difference among the cases depending on
|E| (greater or smaller than Ec = 2

α
ln 2). If |E| is greater than

Ec the probability to see a long period is exponentially small,
but for |E| < Ec this probability reaches unity. Higher lattice
sizes confirm this scenario but modify slightly the value of
α. This behavior is consistent with the numerical simulations
of Ref. [6].

C. Sensitivity to initial conditions

The sensitivity to initial conditions of Q2R has been
discussed previously in Ref. [8]. In fact, when starting from
two distinct initial conditions, which share the same energy and
J , they will evolve along two different paths. As the distance
in phase space is bounded, these two cycles will diverge in a
nonexponential way. However, the separation growth between
them is fast enough so as to be completely analogous with the
concept of sensitivity to initial conditions.

To perform this study we require two close enough
initial configurations. A first initial configuration {x,y}t=0

is arbitrarily chosen. The second one is built by swapping
a single site k̄ in the previous configuration. This site is
randomly selected such that the average magnetization due
to its neighbors is zero (that is

∑
i∈Vk̄

xi = 0 or
∑

i∈Vk̄
yi = 0).

In this way, both initial configurations have the same energy.
Finally, running independently both initial configurations, a
separation distance between both paths can be measured by
employing the so-called Hamming or Manhattan distance
defined as

dH (t) = 1

4N

N∑
k=1

(∣∣xt
k − x̄t

k

∣∣ + ∣∣yt
k − ȳt

k

∣∣),
with {x,y}t and {x̄,ȳ}t denoting two different sequences
belonging to two different cycles. It can be shown numerically
that dH (t) grows approximately as t2 (see Ref. [8] for details).

D. Scope of the paper

Though the Q2R model is quite simple its dynamics is
usually very rich, as it has been documented extensively in the
literature. Moreover, this conservative and reversible system
appears to behave as a typical macroscopic system, as the
number of degrees of freedom increases, showing a typical
irreversible behavior, sensitivity to initial conditions, a kind of
mixing, etc. It is believed that this Q2R is a good representation
of an Ising model in thermodynamical equilibrium.

The phase space of the Q2R system of N sites possesses
22N states, which are partitioned in different subspaces of
constant energy, which are partitioned into a large number of
smaller subspaces of periodic orbits or fixed points. Notice
that, because the system is conservative, there are neither
attractive nor repulsive limit sets; all orbits are fixed points
or cycles.

This feature of the phase space is schematized in Fig. 2(a),
where the constant energy subspace shares in principle many
cycles and fixed points. An arbitrary initial condition of
energy E falls into one of these cycles and runs until it
returns to the initial configuration after a time T , which could
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(a)

(b)

FIG. 2. (a) Scheme for a subspace of constant energy composed
of a number of cycles and fixed points. (b) Cartoon of a cycle of
period T , for which the cycle is composed of T states.

be exponentially long, and it displays a complex behavior
(not chaotic, strictly speaking; see, for instance, [15]). More
importantly, the probability that an initial condition exhibits
such a complex behavior is finite [6]. Moreover, Q2R manifests
sensitivity to initial conditions, that is, if one starts with two
distinct, but close, initial conditions, then the conditions will
evolve into very different cycles as time runs [8]. In some sense,
an initial state explores vastly the phase space, justifying the
grounds of statistical physics.

In conclusion, the overall picture is that, although for a
finite-size system the deterministic automaton Q2R possesses
periodic dynamics so it is not ergodic, there is a huge number
of initial conditions that explore vastly the configuration space
(this is particularly remarkable for initial conditions of random
structure). Therefore, one expects that a master equation
approach may be successful.

III. MASTER EQUATION

A. General formalism

Given a set of initial conditions with a fixed energy E, the
probability distribution �E

t ({x,y}) evolves following a Perron-
Frobenius-like equation

�E
t+1 = LE�E

t , (5)

which, in principle, can be computed by using the microscopic
evolution rule (1). Indeed,LE is easy to build: If the state {x,y}i
at time t evolves into {x,y}k at time t + 1, then one sets the
(i,k) components equal to 1, that is, LE

ik = 1. Checking all
available elements �(E) for a given energy, we can build the
huge, �(E) × �(E), linear operatorLE . This matrix possesses
a large number of blocks and zeros, revealing the existence
of a large number of cycles in the Q2R model (in some
sense, LE is a kind of adjacency matrix of a graph, the graph
being the total number of existing cycles for a given energy).
However, this description is impractical because of the typical

magnitude of �(E). Therefore, the full phase space is reduced
to a description using gross or macroscopic variables, namely,
the total magnetization (4), instead of microscopic variables.

We proceed with a coarse-graining scheme as in Ref. [1].
Let us define a noninvertible projection operator � that maps
the original distribution function �E

t onto ρt (M),

ρt (M) = � · �E
t ({x,y}) =

∑
states with

∑
k xk=M

�E
t .

Formally, �E
t may be seen as a vector of dimension �(E) and

ρt as a vector of dimension N + 1, indexed by M; hence �

is formally a matrix with N + 1 rows and �(E) columns.
Applying the projector operator on the Perron-Frobenius
equation (5), one gets

ρt (M) = � · �E
t = � · LE · �E

t−1 = � · (LE)t · �E
0 , (6)

where �E
0 ({x,y}) is an initial distribution.

As explained in detail in Ref. [1], in general, it is not
possible to reduce the original Perron-Frobenius equation to a
self-contained master equation. Following, Nicolis et al. [1,2],
we take an initial reduced distribution �E

0 ({x,y}) as a combi-
nation of step functions in the aforementioned intervals:

�E
0 ({x,y}) =

∑
M

αMϕM ({x,y}). (7)

In Eq. (7) we have defined

ϕM ({x,y}) =
{

1 for
∑

k xk = M

0 for
∑

k xk �= M.

The linear operator ϕ may be seen as a matrix with N + 1
rows and �(E) columns (a state {x,y} that belongs to a
column vector of dimension �(E) and maps onto a single
magnetization, which may take N + 1 different values). This
is the central assumption of the coarse-graining approxima-
tion. States with the same magnetization are assumed to
be uniformly distributed in the original phase space [see
the ansatz (7)]. The coefficients αM may be obtained by
inverting (7) [1]. The result is

αM =
∑
states

�E
0 ({x,y})ϕM ({x,y}).

Therefore, αM is precisely the Mth component for the coarse-
grained distribution ρ0(M) = ��E

0 . Thus, for this special type
of initial distribution one has

�E
0 ({x,y}) =

∑
M

ρ0(M)ϕM ({x,y}) = ϕ† · ρ0.

In the last equality we have written explicitly ρ0 as an
(N + 1)-dimensional vector and ϕ† as an �(E) × (N + 1)
matrix. Therefore, the Perron-Frobenius equation (6) becomes

ρ t = � · (LE)t · ϕ† · ρ0. (8)

Notice that ϕ† · � = I is the �(E) × �(E) identity matrix.
Therefore, defining the (N + 1) × (N + 1) matrix W by

W = � · LE · ϕ†, (9)

one is able to write the final reduced Perron-Frobenius
equation, which will be of the form

ρ t+1 = W · ρ t . (10)

062140-4

103



MASTER EQUATION APPROACH TO REVERSIBLE AND . . . PHYSICAL REVIEW E 94, 062140 (2016)

The linear operator W acts only in the subspace of constant
E, but is spanned over arbitrary values of magnetization, and
at the same time the reduced density ρ is a vector with its
components indexed by M .

As in the original Perron-Frobenius equation, W depends
explicitly on the Q2R rule through LE ; therefore, in principle,
it is possible to compute it explicitly. However, in practice,
because of the complex and unknown structure of LE (in
particular because of the existence of a myriad of different
periods for a given E), it is not a realistic task because the
matrix W could be quite large.

However, the matrix W can be further reduced fol-
lowing a second coarse-graining process. This partition
is defined through a finite number of sets of nonover-
lapping intervals I1 = [−N,M1),I2 = [M1,M2), . . . ,IK−1 =
[MK−2,MK−1),IK = [MK−1,N ]. [The previous case (10) cor-
responds to K = N + 1.]

We can proceed as previously, defining a second noninvert-
ible projection operator π that maps the reduced distribution
function ρt into a discrete and shorter column vector of
dimension K: f t = (f1,f2, . . . ,fK ). Finally, we obtain a
coarse-grained master equation for the probability distribu-
tion [1,2]

f t+1 = Ŵ · f t . (11)

Here Ŵ is named the transition probability matrix.
The following are important features of the master equa-

tion (11).
(i) The probability vector f t should be positive and

normalizable. Let 1 = (1,1, . . . 1) be a K-dimensional vector;
then we set 1 · f t = 1. More importantly, because of normal-
ization

∑K
i=1 wik = 1, one has Ŵ † · 1 = 1. This implies that

the probability is conserved under the evolution 1 · f t+1 =
1 · Ŵ f t = 1 · f t = 1.

(ii) The Perron-Frobenius equation could be solved exactly
provided it is given an initial given distribution f 0: f t =
Ŵ t f 0.

(iii) Because of the Frobenius theorem, there exists an
eigenvalue that is one, λ1 = 1, while other eigenvalues fall
inside the unitary circle |λi | < 1 for i > 1. Let f eq be the
eigenvector associated with the eigenvalue λ1 = 1; this is an
invariant vector f eq = Ŵ f eq.

(iv) In what it follows we denote by χ (i) the eigenvectors
of Ŵ corresponding to λi . Naturally one has χ (1) ≡ f eq.

(v) There exists an equilibrium state limt→∞ f t = f eq.
(vi) Because all elements in the W matrix are positive, any

non-negative initial distribution remains non-negative.

B. Explicit calculation for the transition probability matrix Ŵ

As already mentioned, to determine empirically the matrix
W or Ŵ , we cannot use (9). Instead, we start with a
magnetization sequence {. . . ,Mt−1,Mt ,Mt+1, . . .} obtained
from direct numerical simulations. This sequence is always
finite, but it could be exponentially long (so in practice infinite).

The transition probability matrix Ŵ may be found from
the probability density functions at times t and t + 1. The
elements of the matrix are given by the following conditional

0.1

0.2

0.3

0.1
0.2
0.3
0.4

FIG. 3. Distribution ρt (M) at a time t schematized in the
distribution on the left. The fraction inside the interval Ik is distributed
after the evolution into a new distribution ρt+1(M) schematized in the
diagram on the right. The normalized distribution provides the kth
element of the ith column: wik .

probabilities (here we use different notation than in Ref. [1]):

wik = P (Mt+1 ∈ Ii |Mt ∈ Ik) = P (Mt+1 ∈ Ii ∩ Mt ∈ Ik)

P (Mt ∈ Ik)
.

Here Mt belongs to the interval Ik at time t and Mt+1 belongs
to the interval Ii at t + 1. Finally, the matrix Ŵ does not
depend on time, which is a feature of a Markov process. The
coarse-graining method is schematized in Fig. 3.

C. Chapman-Kolmogorov condition and time-reversal
symmetry

The final expression for the probability transition matrix (9)
found after applying the formalism of Refs. [1,2] follows
directly from Eq. (8) and the ansatz (7), which implies
ϕ† · � = I . These relations are equivalent to the so-called
compatibility condition

� · (LE)t · ϕ† = W t .

This compatibility condition (or Chapman-Kolmogorov condi-
tion) arises as a result of the approximations done in Sec. III A,
however it is not a general property of the dynamics. For
instance, by taking a complete cycle (t = T ), one readily gets

� · (LE)T · ϕ† = I

(with I being the identity matrix), which evidently differs from
WT because W represents an irreversible behavior toward
equilibrium. Therefore, the compatibility condition is only
valid as an approximation for a limited number of time steps
that enter to a particular sequence. The same argument holds
for the reduced matrix Ŵ defined through (11).

Let us call Ŵ (τ ) the resulting probability transfer matrix
after τ steps; that is, by computing Ŵ as a consequence of
the evolution from t up to t + τ , the Chapman-Kolmogorov or
compatibility condition for Ŵ reads

Ŵ (τ ) = Ŵ (τ1) · Ŵ (τ2), (12)

where τ = τ1 + τ2. In particular, for τ1 = τ2 = 1 one should
satisfy

Ŵ (2) = Ŵ · Ŵ = Ŵ 2.

Other compatibility conditions are

Ŵ (3) = Ŵ (2) · Ŵ , Ŵ (3) = Ŵ · Ŵ (2),

Ŵ (4) = Ŵ (2) · Ŵ (2), Ŵ (4) = Ŵ · Ŵ (2) · Ŵ ,
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etc. In Sec. IV C we check in practice how well these Chapman-
Kolmogorov conditions are satisfied.

Finally, let us state an important result due to Pomeau [16].
The K-time correlation functions impose some restrictions
on the W matrix. Because of time-reversal symmetry, for all
indices i1,i2, . . . ,iK = {1,2, . . . ,K} the symmetry relation

wi1i2wi2i3 · · · wiK−1iK wiKi1 = wi1iK wiK iK−1 · · ·wi3i2wi2i1 (13)

must be satisfied. In what it follows, we apply this coarse-
graining approach to compute the probability transfer matrix
for some particular cases.

IV. SPECIFIC COMPUTATION OF THE TRANSITION
PROBABILITY MATRIX IN VARIOUS SITUATIONS

In this section we apply the coarse-graining approach to the
Q2R dynamics in the case of a small lattice size. In Ref. [17]
we have explored the computation of the transition probability
matrix, in particular, in the case of extended systems (N =
256 × 256). However, in this case the cycles are usually huge,
therefore this general approach is not really satisfactory. In
this sense, we focus our effort on treating systems of moderate
sizes, namely, N = 4 × 4, N = 8 × 8, and N = 16 × 16, all
of them having tractable cycles.

A. Robustness of the methodology

In general, for a system of small size, one is able to find
some cycles for a given energy. Building a time series for
the magnetization {M(t)} = {M1,M2, . . . ,MT }, one defines
a partition of the possible values of the magnetization, as
explained in Sec. III. In the cases considered here, it is always
possible to use the finest possible partition, that is, for the exact
available values of the magnetization (something impractical
in large systems). In this case the partitions are composed
of a set of N + 1 (N is assumed to be even) well defined
values M = {−N,−N + 2,−N + 4, . . . ,N − 2,N}. That is,
for 4 × 4 the partition has a maximum of 17 elements, for
N = 8 × 8 there are 65 elements, and for N = 16 × 16 the
partition possesses a maximum of 257 elements.

The first result concerns the equivalence of the probability
density function of magnetization obtained via the time series
of the magnetization and the equilibrium distribution resulting
from the eigenvectors of the transition probability matrix
Ŵ . Hence, the results arising from temporal averages and
the transition probability matrix in the configuration space
are consistent among themselves. This fact ensures an initial
validation of the method. However, the transition probability
matrix provides extra information about a system, including
the nonequilibrium properties, given by the spectrum of Ŵ .

Next we describe the methodology for the case of a lattice
of size 16 × 16 for an orbit with E = −292 and period T =
43 115 258. The transition probability matrix Ŵ is constructed
following the steps of Sec. III B. However, first we verify that
the master equation does not strongly depend on the length of
the time series for the magnetization. It is important to remark
that we think that this is a crucial step, because it allows us to
compare explicitly the dependence of the results on the partial
length of the cycles, something that is not possible for larger

(a) -200 -150 -100 -50 0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

(b)
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30 35 40 45 50 55 600

FIG. 4. (a) Plot of the equilibrium distribution f eq for the case of
a 16 × 16 system size with E = −292 (E/N ≈ −1.14) and a cycle
of period T = 43 115 258 (the complete cycle). The computation of
f eq is compared with shorter sequences of the same time series of
length T ∗ = 106,5 × 106,20 × 106. (b) Set of 257 eigenvalues of the
Ŵ matrix for the same conditions as in (b).

systems, because in these cases we would never be able to
build the complete period for the time series.

To test the above, we use again the finest partition. In this
case, the transition matrix is of dimension 257 × 257 (so we
will not provide it explicitly) and we characterize it by its
equilibrium distribution and the full set of eigenvalues of Ŵ .
Figure 4(a) plots the equilibrium distributions f eq for the total

cycle T and f T ∗
for the partial cycle of length T ∗. Similarly,

Fig. 4(b) plots the set of 257 eigenvalues, denoted by λT ∗
i ,

for the same sequence {M(t)}, but for four different lengths
of the time series. Visually, no substantial difference among
the different values of T ∗ can be observed. Moreover, Table I
compares quantitatively the mean square difference measur-
ing Q1 = || f T ∗ − f eq||2/K and Q2 = ∑K

i=1 |λi − λT ∗
i |2/K .

Here K is the number of partitions.

TABLE I. Error estimation of the equilibrium distribution and the
spectral decomposition of the Ŵ matrix for different lengths of the
time series.

T ∗ Q1 Q2

106 3.95 × 10−5 0.0038
5 × 106 3.91 × 10−5 0.0020
20 × 106 3.84 × 10−5 0.0002
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Notice that an important feature of the transition probability
matrix is that its eigenvalues are real if the time series satisfies
reversibility [16]. We have verified that the coarse-graining
approach applied to the full cycle with period T shows this
important feature. Namely, the eigenvalues of the Ŵ matrix
are real numbers. However, as we apply the same approach
to a partial sequence of the same cycle of length less than
T , some eigenvalues become complex (typically located near
the origin in the complex plane). This is important because,
in practice, for larger-size systems, one never closes a cycle,
hence only incomplete sequences are available and thus the
matrix would not have, in general, pure real eigenvalues.
However, we emphasize that the existence of these complex
eigenvalues is spurious.

Finally, it is important to compare results for partitions of
different size. First, we compute the equilibrium distribution
for three different partitions sets, more precisely, for an 8 × 8
system evolving by Q2R at E = 0 in a periodic orbit of
T = 672 018. Figure 5(a) compares the three different coarse-
graining partitions (containing 5, 11, and 34 elements). Despite
the evident differences among the coarse- and the finer-
graining partitions, one notices that both partitions exhibit
the same accurate behavior of the equilibrium distribution.

FIG. 5. (a) Plot of the equilibrium distribution feq vs M for an
8 × 8 system size with E = 0 and a cycle of a period T = 672 018
for three different partitions of the magnetization values. The plot
shows how all distribution functions lie under the same curve. The
inset shows the parabolic behavior in magnetization, which after
a fit reads ln feq = −M2/116. (b) Plot of the second eigenmode
χ (2) corresponding to the eigenvalue closest to the unit circle. It is
noticeable how all partitions produce similar results.

Moreover, Fig. 5(b) compares the second eigenmode χ (2)

without any substantial difference among the partitions.
In what follows, we summarize the methodology for cases

of sizes 4 × 4, 8 × 8, and 16 × 16. In all cases, the full cycles
are considered and we provide the finest possible partition.

B. Exact calculation for various lattices

We have studied in detail the case of a 4 × 4 periodic
lattice because the phase space possesses 232 ≈ 4 × 109

distinct configurations and the calculations can be completely
performed, thus showing explicitly the method. It is shown that
the coarse-graining approach is fully applicable in the 4 × 4
lattice case. We used different partitions, getting a well defined
probability transfer matrix Ŵ . Reference [13] summarizes the
calculations and main characteristics for various energies.

Next we explore a few cycles for larger systems (8 × 8 and
16 × 16). The cycles in these cases may be as long as desired
for any practical purpose so that the equilibrium distribution
is calculated with enough precision.

In the case of 8 × 8, for various energies and the finest
possible coarse graining, for the sake of brevity, we omit
explicitly the plots of the first eigenvector f eq as well as the
eigenvalues because they are similar to the 16 × 16 lattice case.

The case of a 16 × 16 system size displays the most accurate
equilibrium distribution found in the current research. The fluc-
tuations around the distribution are small and the eigenvalues
seem to form a continuous spectrum (the difference between
two consecutive eigenvalues is small). We have also explored
a wide range of energies. The rank of the matrices (that is, for
the finest partition) is K = 122 for E = −332, K = 205 for
E = −316, K = 197 for E = −292, K = 129 for E = −168,
and K = 101 for E = −92. The equilibrium distribution, as a
function of the magnetization, is plotted in Fig. 6(a). Similarly,
the spectral decomposition is shown in Fig. 6(b).

In Fig. 6(a) one notices how in the case of larger energies,
say, E = −92 and −168, the equilibrium distribution function
is symmetric, under the change M → −M; however, as
the energy decreases one sees that for the lowest energy
E = −332 a spontaneous symmetry breaking appears, so
the equilibrium distribution is no longer an even function.
The equilibrium probability may manifest a positive or
negative magnetization (switching from one case to the other
by changing the initial condition via the transformation
{x,y}t=0 → {−x,−y}t=0). Moreover, the energy E = −316
case shows an equilibrium probability density function that
manifests bi-stability. Indeed, these bimodal distributions
possess three peaks, one at M = 0 and the two other at
M = ±M0 �= 0. Finally, the width of the probability density
functions increases near the transition energy.

Figure 6(b) shows the spectral distribution of the probability
transfer matrix that defines the master equation. Already
for a lattice of size 16 × 16 one observes how the spectral
distribution is almost continuous. One notices that the energies
E = −316 and −292 possess the largest eigenvalues for
a given index i. This means that, probably, the largest
eigenvalues occur near the critical energy.

It is interesting to remark that the nonequilibrium is gov-
erned by those eigenvalues close to one. The nonequilibrium
features behave as slow modes. In the current case one has
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FIG. 6. (a) Equilibrium distributions f eq for the case of a 16 × 16
system size and for the energies and periods E = −332 and T =
796 398, E = −316 and T = 4 015 624, and E = −292 and T =
43 115 258, respectively. We also consider E = −168 and −92 with
periods larger than T > 108. (b) Eigenvalues of the W matrix showing
the existence of long-wave relaxation properties.

f t = ∑K
i=1 αiλ

t
iχ

(i). Defining σi = − ln λi , one obtains the
usual slow mode relaxation. Moreover, the global behavior
of the eigenvalues closest to unity represents the transport
coefficients [17]. Figure 6(b) indicates that λi ≈ 1 − γ i,
which suggests that the nonequilibrium features are governed
by a Fokker-Planck kind of equation. The behavior of the
eigenvector agrees also qualitatively with this picture (see [17]
for more details).

C. Chapman-Kolmogorov conditions

We have checked the Chapman-Kolmogorov relations for
the case of Q2R in a 16 × 16 lattice for the case of E = −292
and a periodic orbit of T = 43 115 258. We have built five
different probability transfer matrices Ŵ (τ=1), . . . ,Ŵ (τ=5) (see
Sec. III C for the definition of Ŵ (τ )).

First, we compared the matrices Ŵ (τ=2) and Ŵ (τ=1) ·
Ŵ (τ=1), both of rank 197 × 197, computing the distance
between them, e.g., Ŵ (τ=2) and Ŵ (τ=1) · Ŵ (τ=1), via the usual
distance (the square indicates the product of a matrix by itself)

d = 1

K2
Tr[(Ŵ (τ=2) − Ŵ (τ=1) · Ŵ (τ=1))2].
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0.8
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FIG. 7. Plot of the ratio qn for five eigenmodes for the case of a
16 × 16 system.

In the current case, the matrices are similar up to d =
5.81 × 10−6. More quantitatively, we look at how good the
eigenvectors of different matrices are, namely, Ŵ (τ=2) and
Ŵ (τ=1) · Ŵ (τ=1). To do that, we compute the ratio among the
nth eigenvectors of the aforementioned matrices, that is,

qn = χ (2)
n

χ
(1)
n

,

where χ (2)
n and χ (1)

n are the nth eigenvector of the matrices
Ŵ (τ=2) and Ŵ (τ=1). This quantity is plotted in Fig. 7. One
notices that qn ≈ 1 almost for all values of magnetization, but
it also has an anomalous behavior near the nodal points of
the eigenvector χ (1)

n . In general, the agreement of all these
eigenvectors is satisfactory.

Next we check the Chapman-Kolmogorov relations written
in Sec. III C, comparing the spectral properties of both
matrices, namely, the set of eigenvectors and its eigenvalues.
As can be seen in Fig. 8(a), the equilibrium distribution f eq
matches perfectly for different values of τ = {1,2,3,4,5}. This
proves that the equilibrium configuration f eq is an invariant
of the dynamical system. However, nonequilibrium properties
do depend on the sampling time τ . Indeed, the eigenvalues
corresponding to different probability transfer matrices do
depend on the choice of the parameter τ . This is not a surprise,
because it is expected that the eigenvalues λ

(τ )
i of Ŵ (τ ) should

scale as λ
(τ )
i = λτ

i , where λi are the set of eigenvalues of
Ŵ (τ=1). This scaling is shown in Fig. 8(b), indicating an
anomaly because it does not work for the case τ = 1, but the
scaling works well for higher τ . This deserves more careful
study.

D. Pomeau’s reversal symmetry relation

According to Pomeau [16], the microscopic time-reversal
symmetry imposes the symmetry relation (13). For rank-K
transition probability matrices, it is possible to verify that
there are KK different required conditions (13). Therefore,
it is only possible to check this condition for a moderate rank
K . For the case of 4 × 4 all probability transfer matrices
that we have checked satisfy Pomeau’s reversal symmetry
relation [13]. For larger Ŵ matrices, say, K > 9, we have not
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FIG. 8. (a) Equilibrium distributions f eq for the case of a
16 × 16 system and for the energy E = −292 and T = 43 115 258.
(b) Eigenvalues of the W matrix showing the existence of long-wave
relaxation properties.

checked Pomeau’s relation because it involves a cumbersome
numerical calculation.

V. CONCLUSION

The basic properties of a Q2R cellular automaton, namely,
its formal reversibility and the existence of a conserved energy,
suggest that Q2R could be a good benchmark to test ideas of
statistical mechanics. More importantly, the reversibility is not

conditioned by any kind of approximate numerical algorithm.
The Q2R model possesses a rich dynamics characterized by
a huge number of invariants that partition the phase space in
terms of the conserved energy and a huge number of periodic
cycles. Although in a system of moderate size the periods are
huge [6], for lattices of small size these cycles may be fully
characterized.

We introduced a coarse-graining approach that allowed us
to write a coarse-grained master equation, which characterizes
equilibrium and nonequilibrium statistical properties of the
system. We reviewed the methodology and tested the con-
sistency of results in lattices of different sizes. We found
that for well chosen partitions, this coarse-graining technique
is a powerful tool to reduce the information of the whole
system in such a way as to obtain a tractable probability
transfer matrix that simplifies the original master equation.
One central property of this matrix is the existence of an
invariant probability distribution that agrees with different
coarse-graining procedures. In addition, we computed the
spectral decomposition of the probability transfer matrix
characterizing the nonequilibrium properties of the system.
Finally, we checked the compatibility conditions, as well as
the time-reversal symmetry conditions for short time steps. In
many situations the methodology is consistent and provides a
complete statistical description of the system. However, some
discrepancies appear that deserve caution.

This study provided us with a systematic approach for
reducing the number of pertinent macroscopical variables
resulting into a manageable master equation.
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