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Abstract

The main goal of this thesis, relies the dynamics of a reversible and con-
servative cellular automaton Q2R model. Q2R is a automaton that runs on a
two-dimensional grid of finite size and is reversible in a physical sense, that is,
not only is the automaton rule invertible, but the backward rule reads exactly
the same as the forward one. This model is a dynamical variation of the Ising
model for ferromagnetism that possesses quite a rich and complex dynamics.

As expected, the Q2R automaton only possesses fixed points and periodic
orbits and it has been shown that possesses an energy like quantity, and, at
least an extra conserved quantity. Although, the dynamics includes only fixed
points and periodic orbits, numerical simulations show that the system ex-
hibits a ferromagnetic phase transition in the large system size limit for a well
defined critical energy.

In the present work, we characterize the configuration space, that is com-
posed of a huge number of cycles with exponentially long periods. More pre-
cisely, we quantify the probability distribution functions of states in terms of
the aforementioned invariants. We show that the dynamics of the system in
the phase space appears to be, depending on the energy, a random walk or a
Levy flight.

The main contribution of the present thesis is the application of a coarse-
graining approach that allows to write a coarse-grained master equation, which
characterizes equilibrium and non equilibrium statistical properties, for the
Q2R model. Following Nicolis and collaborators, a coarse-graining approach
is applied to the time series of the total magnetization, leading to a consistent
master equation that governs the macroscopic irreversible dynamics of the
Q2R automata. The methodology is replicated for various lattice sizes. In the
case of small systems, we show that the master equation leads to a tractable
probability transfer matrix of moderate size, which provides a master equation
for a coarse-grained probability distribution. The method is validated and
some explicit examples are discussed.
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Introduction

The Ising model, introduced in the early 1920’s by Lenz [1| and Ising [2] as a thermody-
namical model for describing ferromagnetic transitions, has evolved as one of the most
prolific theories in the twenty century, opening a huge number of new areas of knowledge.
The importance of the Ising model raises in its universality and robustness, indeed despite
its simplicity, this model has been the starting point for the emergence of various subfields
in physical (and social) sciences, namely, phase transitions, renormalisation group theory,
spin-glasses, lattice field theories, among others [3].

A cellular automata approach to the two-dimensional Ising model is provided by the
Q2R model, first introduced by Vichniac in the mid-80’s ||, where “Q” means the number
of neighbors (quatre in french), “2” indicates a two-step dynamics, and “R” is for reversibil-
ity. This model exhibits several important features of physical systems: a deterministic
rule, reversibility and is formally not ergodic, because it only possesses finite periodic or-
bits. It is crucial to notice that since the evolution of the dynamics involves only discrete
steps, with boolean values 0 and 1, there is no any numerical or round errors associated
to finite approximations.

The study of the dynamics and properties of the Q2R model has a long history. The
first work was done by Vichniac [!| and Pomeau [5], who showed that the energy E is con-
served. Then, Herrmann [6] implemented the Q2R algorithm to study the two-dimensional
Ising model in the frame of the micro-canonical ensemble. In this work, Herrmann used
the concept of magnetization and represented its magnitude as a function of the initial
energy, displaying the first pattern picture for the phase transition of the Q2R model.
Later, Herrmann, Carmesin and Stauffer |7| studied numerically the probability to reach
an “infinitely” long period for some energy values. Moreover, if the energy is large enough,
this probability tends to one. On the other hand, Takesue [8] studied the Q2R model from
the point view of reversibility, using statistical mechanics. His studies concerned explic-
itly all class of rules for the one dimensional case, the Q2R being only a special case.
However, the Q2R (90R in his terminology), is the analogue of an ideal gas of particles
with speeds +1 or —1, which is a system that cannot reach equilibrium in practice, but, it
is ergodic only in thermodynamical equilibrium. Ultimately the Q2R model was studied
numerically for the irreversible behavior and the existence of a spontaneous transition
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from a non-coherent state to a coherent state |9].

In order to quantify the behavior of the Q2R cellular automata, we have deeply de-
scribed spin dynamics in phase space, through the study of a macroscopic observable,
called Magnetization (M), defined as the sum of all the states at each time step. Previ-
ously, it has been stressed that on two-dimensional lattices, the system exhibits a phase
transition when the value of the energy is close to the critical energy of the Ising model,
E./N = —/2. Also, in the literature [J] it has been observed numerically two different
behaviors of the system, defined in term of M, and as function of energy: ferromagnetic,
paramagnetic and metastable.

The goal of this thesis, consists in the development of a detailed description of the
above mentioned behaviors based on the concepts of statistical methods, using more ex-
tensive numerical tools (OpenMP libraries in C++ language) than previous approaches.
To fullfil the requirements for this goal, several methods of Statistical Mechanics have
been used, for instance, Phase diagrams, Coarse-graining, probability distribution func-
tions (PDF), among others [10, 11].

The main contribution of this thesis is the application, by of following [12, 13], a coarse-
graining approach that allows us to write a coarse-grained master equation, which char-
acterizes equilibrium and non-equilibrium statistical properties, for the Q2R automata.
We can see that this coarse-graining technique is a powerful tool, which reduces the in-
formation for the whole system to a tractable probability transfer matrix which simplifies
the original master equation.

A second contribution focused on the appearance of orbits, that is, trajectories defined
by the same initial and final configurations, with different periods at the same energy level.
In order to quantify these orbits, we defined an observable, called Hamming or Manhat-
tan distance, between the states at time steps ¢t and ¢t + 1. Thus, we have shown how the
system presents two types of behaviors: random walks and Lévy flights.

This thesis is organized as follows. The first chapter 1 discusses different models with
common features arising in a class of Ising-based models. In the second chapter 2, the
fundamental properties of the Q2R model are presented: the dynamics in one and two
dimensions, the behavior of the system when the energy is near the critical value E.,
and the corresponding phase transition. The third chapter 3, we present the phase space
characterization. Finally, the chapter 4 presents a coarse-graining.
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Chapter 1

Around of the Ising model

1.1 Ising-based models

In this chapter, we shall discuss four distinct applications of Ising-based models with
applications to both statistical mechanics and social sciences. The first one is devoted
to the Glauber-Ising time dependent model with applications to decision-choice theory
in economics and social sciences. In the sixties Glauber [11], introduced an stochastic
time dependent rule to mimic the statistical properties of the original Ising problem.
Glauber’s dynamics has been considered in the context of social sciences by Brock and
Durlauf |15, 16], and, more recently, by Bouchaud |17].

The second topic is Q2R automata model introduced in the 80’s by Vichniac [{]. The
Q2R! possess time reversal symmetry, which is at the core of any fundamental theory in
physics. Moreover, the temporal evolution of this automata conserves a quantity which
is closely related to the energy of the Ising model [5|. We are interested in this model
because is a natural starting point for studying the statistical and typical irreversible
behavior of reversible systems. As shown in Ref. [9], this system evolves in an irreversible
manner in time towards an “statistical attractor”, moreover the macroscopic observable,
the temporal average of the global magnetization, depends on the value of the initial
energy following a law which is exactly the one obtained theoretically by Onsager |18]
and Yang |?|, more than 60 years ago. Moreover, in Ref. [19] it is shown how this model
exhibits the same features of Hamiltonian systems with many degrees of freedom, that is,
a sensibility to initial conditions, positive Lyapunov exponents, among others.

The second model that we shall discuss in this article concerns the Schelling model of
social segregation, introduced in the early seventies by Thomas C. Schelling [20, 21, 22|.
This model became one of the paradigm of an individual-based model in social science.

1Q by four, quatre, in french, 2 by two steps automata rule as explicitly written below, and R by
reversible.
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Schelling’s main contribution is that shows on the formation of a large scale pattern of
segregation as a consequence of purely microscopic rules. More recently, it has been shown
that the Ising energy, which is a good measure of segregation, acts as a Lyapunov poten-
tial of the system is driven, under particular conditions, by a strictly decreasing energy
principle [23].

Finally, we shall discuss a model for dissemination’s disease known as Bootstrap per-
colation, first introduced in the late seventies by Chalupa, Leath and Reich [21]. In this
model a healthy individual may be infected if the majority of its neighbors are infected.
On the other hand an infected individual never recovers, so it remains infected forever.
This model has been used as a model for disease’s propagation. One of the most impor-
tant questions arising is the determination of the critical number of infected individuals
to contamine the whole population.

1.1.1 Generalities
The lattice and the neighborhood

All models discussed below, display similar features, the system consisting of a lattice
with N > 1 nodes, in which each node, k, may take a binary value z;(t) = £1 at a given
time. Each node %k on the lattice interacts, in general, with all other individuals, with
an interaction coefficient Ji; (i denotes an arbitrary node). But in particular, a node, k,
may interact only with a finite neighborhood denoted by Vj. The number of neighbors
for site k, |Vk|, is the total number of non zero Jy, for each node. In Fig. 1.1 we show, as
an example, four possible lattice configurations.

The “energy” and the “magnetization”.

We define the macroscopic observables of the system, by analogy with the original Ising
model of ferromagnetism, as follows:

Bliw)] = 53 Jun(t)a(t), (11)
i,k

M[{z}] = D m(t). (1.2)

These quantities will be the pertinent observables, and we shall use them to classify the
distinct cases that we will be described in the next sections.
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Figure 1.1: Examples of lattices and neighborhoods. We illustrate explicitly: a) an arbi-
trary network with a random number of neighborhoods; and three periodic regular lattices
in two space dimensions: b) a square lattice with a von-Neuman neighborhood of 4 in-
dividuals (the original lattice of the Ising model with the nearest neighborhood); ¢), a
square lattice with a Moore neighborhood of 8 individuals, and d) a hexagonal lattice
with 6 neighborhoods.

1.1.2 The time-dependent Glauber-Ising Model

Glauber [11], in the sixties, introduced a dynamical model for the study of the Ising model.
The rule governing Glauber’s model is the following:
Let, the local magnetization at the site k£ and at a time ¢, be:

Ue(t) = B+ Jyai(t), (1.3)

with B being an external magnetic field. Then, the spin’s value at the next time step,
t+ 1, will be

xr(t + 1) = sgn(Uk()), (1.4)

that is xx(t + 1) = +1 if Up(t) > 0 and x4 (t + 1) = —1 if Ui(t) < 0. We call (1.4) the
deterministic rule. In probability language, if Ug(t) > 0, then zx(¢ + 1) would be +1
with probability 1, and it would be -1 with probability 0. This rule is updated in parallel
fashion.
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Next, this deterministic rule may be modified by a probabilistic rule, in the following
way:
‘l’l Wlth probablllty P = m
rp(t+1) = (1.5)
—1 with probability p= m

Notice that in the limit f — oo one recovers the deterministic behavior (1.4), while in
the limit § — 0 one reaches a completely random (binomial) dynamics regardless of the
value of U, that is 24 (t + 1) would be +1 with probability 1/2.

The Glauber rule is indeed a Markov chain which manifests, in a perfect way, the
statistical properties of the Ising phase transition for the case of Von-Neuman neigh-
bourhoods, and it also agrees with the mean field approximation for the case of a large
number of neighbours . Finally, nowadays the Glauber dynamics is the starting point for
numerical simulations of spin glasses systems with random values for the J; coefficients.

Random Decision-Choice Model

Let us consider now a random choice model |15, 16, 17] in the context of social sciences.
An individual takes a choice based on a combination of decision quantities, namely an
individual “decision parameter” f;, a “global decision” or “public information” parameter
F(t) (which could be included in the previous individual decision parameter) and a “social

pressure” > . Jiyx;(t).

Next take the so called “perceive overall incentive agent function”, by Bouchaud [17].,

Up(t) = fe + F(8) + ) Jui(t), (1.6)

and follow the Glauber deterministic dynamics (1.4) or more generally the Glauber
random dynamics (1.5).

Due to both, the Ising-like feature as the Glauber Dynamics evolution rule, a phase
transition is known to appear. This transition favors the decision into one or another of
the two options of the binary variable.

1.1.3 The Q2R cellular automata

The Q2R rule considers the following two-step rule which is updated in parallel [1] this
two-step rule may be naturally re-written as a one-step rule with the aid of an auxiliary
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dynamical variable [5].:

ZL’k(t—i—l) :l’k(t— 1) X . (17)

Naturally, it is possible to add, without any difficulty, an external magnetic field B.
However, some caution should be taken into account: the model works if Ug(t) = B +
> Jikxi(t), may vanish, therefore, B and the J;; factors should be integers. For instance
in the case of a finite neighborhood, B + |Vi| should be an even number.

The rule (1.7) is explicitly invariant under a time reversal transformation ¢ + 1 <> ¢ — 1.
Moreover, as shown by Pomeau [5], the following quantity, that we may call an energy,
despite not being exactly the energy of the Ising model.

El{an(t), 2t — 1)}] = —% N Taae(t)ai(t - 1), (1.8)
i,k

is preserved under the dynamics defined by the Q2R rule (1.7). Moreover, the energy is
bounded by —2N < E < 2N.

1.1.4 Schelling model for Social segregation.

Schelling model, is also characterized by a binary variable x; which may take values +1
and -1. We shall say that an individual x; at the node k is “happy” at his site, if and only
if, there are less than 6 neighbors at an opposite state. 6 is a tolerance parameter that
depends in principle on the node and, it may take all possibles integer values, such that
0 < 0p < |Vi| (we exclude the cases 0, = 0 and 6), = |Vj| from our analysis).

The satisfaction criterion reads the criteria (1.9) may be unified in a single criteria |23]
(multiplying both sides of the two inequalities by xy):

an individual x;, is unhappy at the node k if , and only if, x, Z i < |\ V| — 20,
1€V

which is a kind of energy density instead of the threshold criteria found in Glauber dy-
namics (1.4).

An individual x is unhappy at the node k if and only if:

Vil = 2n(=1) < |Vi| — 260, if p = +1

ieVi, 2ng(—1) — |Vie| > 20, — |Vi|, if zp=-—1.
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Here ny(+1) is the number of neighbors of x; that are in the state +1; and, ng(—1)
the number of neighbors of z; in the state —1, naturally ng(4+1) + ng(—1) = |Vi|.

Having labeled all different un-happy individuals, one takes randomly two of them in
opposite states (one +1, and one -1) and exchanges them. Even when this is not exactly
the original Schelling’s rule, the present Schelling’s protocol is a simpler one. In any case,
it can be modified in a straightforward way to include for example vacancies |25, 20],
different probabilities of exchange [25], multiple states variables [27], etc.

If k£ and [ are these random nodes, then the evolution rules:
2p(t) =zt + 1) = —xx(t), z(t) = it +1) = —xy(t)

and for all other nodes i # k & [ remain unchanged z;(t) — z;(t + 1) = z;(¢).

The protocol is iterated in time forever or until the instant when one state does not
have any unhappy individuals to be exchanged.

Notice, that Schelling criteria (1.9) is deterministic, however the exchange is a random
process, therefore two initial configurations will not display the same behavior in detail,
but they will evolve to the same statistical attractor |28].

Schelling’s protocol, defined above, has a remarkable property: if 6, > @ then any
exchange k <> [, will always decrease the energy

El{z}] = ——ZZx, x(t (1.10)

k i€V

The energy (1.10) follows from (2.5), whenever J;;, = 1 for neighbors and Ji; = 0
otherwise.

For a proof, we refer to Ref. [23]. We shall only add the following remark: if 6, > |L2’“‘,
then the evolution necessarily stops in finite time. This is because the energy (1.10)
is bounded from below by Ey = —3 ZkN 1 |Vk| and because the energy (2.5) decreases
strictly. On the other hand, for 6, < |V’“‘
exchange indistinctly.

, the energy may increase or decrease after an

1.1.5 Bootstrap percolation

We shall consider the problem of bootstrap percolation for a given lattice [21]. As in
the previous models, each node k interacts with |V;| neighbors, the neighborhood defined
by the set Vi.. As before the state, x;, may take values +1 and -1 depending on if it
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is “infected” or not. At a given “time” the state xj(t) evolves into xx(t + 1) under the
following parallel rule: if a site is not infected, and if the majority of its neighbors are
infected, then the site becomes infected [29]. On the other hand, if the site is already
infected it keeps its infected state.

Summarizing, the evolution rule, which is updated in parallel, may be written in the
following general way:

if 2, (t) = =1 and Y a;(t) > 0, then zy(t + 1) = +1, (1.11)

1€V
otherwise, if zy(t) = 1 then zx(t +1) = 1.

From the dynamics it follows directly that the energy (1.10) decreases in time, E(t +
1) < E(t), as well as the magnetization increases in time: M (t+1) > M (t). Asin the case
of the Schelling model, because the energy is a strictly decreasing functional, and because
it is bounded from below in a finite network, then the dynamics always stops in finite time.

Finally, let us comment that a problem that has increased in interest in recent times
deals with the question of how the total infection depends on the initial configuration
which is randomly distributed and such that a site will be at the state x; = +1 with a
probability p [30].

Naturally, if initially p &~ 1/2, then every site has in average the same number of
xr = +1 states and z; = —1 in its neighborhood, then the system would percolate
almost in one step. However, as p decreases, one can define a probability, P(p), which
is the probability that the system would percolate at the end of the evolution process.
Though P(p) count be determined explicitly at the end this probability can be numerically
determined.

1.1.6 Recapitulation

The afore mentioned models have in common a threshold criteria (1.4), (2.3), (1.9), and
(1.11) the subsequent dynamics follows different rules. Therefore one should expect dis-
tinct properties.

The Glauber Dynamics does not preserve neither the energy or magnetization, however
the Q2R dynamics does preserve only the energy but does not preserve the magnetization.
The Schelling model does preserve only the magnetization, but if 6 > |Vj|/2 the system’s
energy is strictly a decreasing function. Finally, in the infection model of section 1.1.5,
the energy strictly decreases whereas the magnetization is an increasing function of time.
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Table 1.1: Recapitulation of the four above mentioned models, and its main conservation

properties.
‘ Dynamics H Evolution Criteria ‘ Energy ‘ Magnetisation ‘
Glauber sgn(B + >, Juwi(t)) Not Conserved | Not Conserved
Q2R o Jwxi(t)) =0 Conserved Not Conserved
Schelling || sgn(zy(t)) > ey, 7i(t) < [Vi| — 20, | Not Conserved * Conserved
Bootstrap > ey, Tilt) >0 AE <0 AM >0

o If Qk > |Vk|/2 then AFE < 0.

1.2 Ising patterns, transitions, and dynamical behavior

In this section, we shall roughly describe the essential phenomenology of the Ising-like
models and rules described in the previous section, whether they are governed (or not)
by the rules of conservation of magnetization energy.

1.2.1 Glauber and Decision-Choice model dynamics

The time dependent Glauber-Ising model shows a very rich phenomenology. As such, the
model’s behavior has been explored using mean field approximation (the Curie-Weiss law)
as well as by direct simulations of the rule (1.5). Here our macroscopic observable is the
total magnetization per site, namely M (t)/N and were M (t) is defined in equation (1.2).

In what it follows, we will only show results for the direct simulation of the Glauber-
Ising model (1.4) and we shall use the terminology of social sciences (1.14). In Figure 1.2
we show three distinct states characterized by different values of the parameter of “irra-
tionality” [, In statistical physics, 5 is the inverse of the thermodynamical temperature,
B ~ 1/T. and a null value for the public information parameter F'(t).
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Figure 1.2: Snapshots of the patterns for the Glauber-Ising model. The simulation is
for a N = 256 x 256 periodic lattice with von Neuman neighborhood. Moreover we take
fr = 0 and F' = 0. The parameter of “irrationality" and the magnetization averages are,
respectively : a) corresponds to a paramagnetic phase for 5 = 0.53 and (M) /N = 0.0006;
b) a critical phase for § = 0.82 and (M) /N = 0.02; and c) corresponds to a ferromagnetic
phase f = 1.8, and (M) /N = 0.39.

In Fig. 1.3 we show two different bifurcation diagrams for the mean magnetization
(M) /N versus the irrationality parameter (,for non-zero or null value for the public
information parameter F'(t). Each point, was calculated for a total of approximately
2 x 10* time steps. We can readily observe the appearance of a bifurcation for the case
F =0 and  greater than . =~ 0.8.

| (M/N)

(M/N) 1 .'HHVUUUUuuQ
1 AN R XX :
° e FF=0.1
0.5¢ ¢ 0.5¢ ° F=02
F_o ° F=-0.1
o — °
O- oo 0000 0 o° 0r $3 .
°
0.5 . -0.5
°
°
-1 000000000 -l ‘ ¢ o 0 0 0 0 40 44
0.5 1 1.5 B 0.5 1 1.5 B

(a) (b)

Figure 1.3: Average magnetization (M) versus 8. The averages are taken from long time
simulations of approximately 20000 time steps. In both cases the random external field
is settled to zero fi = 0. a) Case of F' =0; and , b) Cases of F' = £0.1 and F' = 0.2.

Therefore, the time dependent Glauber-Ising model displays a transition from a para-



14 CHAPTER 1. AROUND OF THE ISING MODEL

magnetic to a ferromagnetic phase for §. ~ 0.8 which is in agreement with the critical
threshold value of the Ising model [31], 8. = log(1 + v/2) ~ 0.881 ...

1.2.2 Schelling dynamics

We shall characterize the dynamics of Schelling model for the particular case in which the
system is a two dimensional periodic lattice, and each site possess the same neighborhood
consisting in the |V| closest individuals. We shall consider also that the parameter 6y is
uniform, that is, 6, = 0.

Fig. 1.4 displays an example of typical patterns arising in the Schelling’s model. As it
can be observed, the dynamics depends critically on the value of the tolerance parameter
0, defined above. More precisely, if 0 is larger or smaller than 6., = |V|/4, 0. = |V|/2,
and 0., = 3|V|/4.

The initial state was chosen randomly with a binomial distribution, that is zx(t =
0) was +1 with probability 1/2 and -1 with the same probability. Hence, the total
magnetization is M (¢ = 0) ~ 0, and it is kept fixed during the evolution.

The simulations shown in Fig. 1.4, corresponds to a Schelling rule with a vicinity of
|V| = 20 elements. Clearly three different cases can be distinguished, and at least three
transition points, namely 0., = |V'|/4, 6. = |V'|/2, and 0., = 3|V|/4.

For 1 < 6 < |V|/4 (see Fig. 1.4-a) one observes a non-segregated pattern, the states
x, = £1 are swapping, more or less randomly in the system, without a formation of any
kind of large scale structure. In a coarse graining scale, for instance, the scale of the vicin-
ity, the coarse-grained magnetization, namely, m = ‘71| Zier x;(t) is zero everywhere, as
well as the energy notice that, as already said, the total magnetization is constant in
the Schelling model. Therefore we cannot match the Schelling transitions observed here
with the phase transition for the cases of the Glauber-Ising and the Q2R models. In this
situation, it is tempting to make an analogy with the Ising paramagnetic phase.

For |[V|/4 < 6 < |V]/2, one observes how a segregation pattern arises (see Fig. 1.4-b &
¢). More important the coarse-grained magnetization is locally non-zero, and the pattern
presents domain walls, which are characteristic of a ferromagnetic phase in the Ising-like
terminology.

For |[V]/2 < 6 < 3|V|/4, one observes also segregation (see Fig. 1.4-e), but the dy-
namics stops in a finite time. The final state is a quenched disordered phase for which
one may conjecture an analogy with a “spin glass” phase, and the appearance of a kind
of quasi long-range order.
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Figure 1.4: Schelling’s patterns for various satisfaction parameter 6 in a square periodic
lattice of N = 256 nodes. The vicinity is uniform and contains |V| = 20 elements. a)
6 =5;b)8=06;c)0=09;d) 6 =10 (eventually this case the two spots observed merges
into a single one, this coalescence dynamics, however, it happens after a longtime); e)
6 =11 and f) 6 = 15, are two cases whenever the energy is a strictly decreasing function
so the dynamics stops in finite time, in the former case this happens after a time so
segregation is possible, however in the later case the dynamics stops shortly after the
Schelling algorithm started. For # = 15 we say that this is a frustrated dynamics, because
the system cannot reach the ground state energy because the dynamics stops after one of
the population is completely happy.

The case § = 3|V|/4 in (see Fig. 1.4-f) it is interesting because, although the are some
islands of segregation, the system also recovers its original heterogeneity, with almost a
null coarse-grained magnetization m.

1.2.3 Bootstrap percolation

The spin dynamics for the case of Bootstrap percolation of Section 1.1.5 is always charac-
terized by an energy decreasing principle, moreover because a +1 spin never flips to a -1,
the magnetization is mandated to increase up to a constant value because of the impossi-
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bility to infect more individuals, or simply because the system has been fully percolated
by the +1 spin states.

As said in Sec. 1.1.5, we shall consider a random initial state with a fraction p of the
spins at the state zp = 41 (that is, a fraction p of the population would be infected).

= v i - s 22,

(d) (e) (f)

Figure 1.5: Bootstrap percolation’s patterns at six different time steps. The network is
a square periodic lattice of N = 256 sites with a uniform vicinity of |[V| = 24 sites. a)
display the initial random state with an initial fraction 0.2 of z;, = +1 (that is, a given site
is +1 with probability 0.2, and -1 with probability 0.8); In b) one observes the nucleation
of bubbles, which eventually would propagate the +1 state over the random phase; In c)
one observes that some infected bubbles have not reach the critical size and they do not
propagate; however, in d) big bubbles invade the system transforming the interface in a
front propagation over the whole system e) and f).

[t is observed, that for a moderately large value of p, say p &~ 1/2, the system becomes
unstable very fast, percolating the x, = +1 state everywhere almost instantaneously.

However, as one decreases p, the system presents a well defined scenario. Fig. 1.5
shows the typical evolution of a percolation pattern in time. More precisely, the system
nucleates bubbles of infected states (x; = +1) and two scenarios are possible, either these
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bubbles continues to grow or they stop (compare Fig. 1.5 b & c¢). In analogy with the
instability of a first order phase transition, it should exist a critical radius of nucleation
that depends explicitly on p.

(b)

Figure 1.6: a) Scheme for the mean field estimation of the critical radius of infection. The
gray region represents the random initial data with a fraction p of +1. b) Details of the
geometry for the calculation of A(R).

This critical radius of nucleation maybe estimated in the limit of large vicinity, in
other words, in the range of validity of the mean field approximation. Let be p the
fraction of infected sites initially distributed randomly in the system and a the radius
of the vicinity (ra? = |V|). We shall add an infection bubble with a radius R (see Fig.
1.6-a). A x = —1 state in the boundary of the infected circle will become infected if
Sora(t) = (2p — 1)(wa® — A(R)) + A(R) > 0, where A(R) is the surface of the portion
of the circle inside the infection bubble (see Fig. 1.6-b). Therefore, the bubble will infect
neighbors and will propagate into the system, if

A(R) - 1—2p
a2 = 2(1—p)

(1.12)

The surface A(R) follows from a direct geometrical calculation. In the large R/a limit,

one gets
AR) 1 a 2a? 5
ma> 2 37R  9m’R2 +OR™), (1.13)
therefore, one concludes that the critical radius of nucleation scales as
R. 2(1-p)

~
~

a 3mp

Figure 1.7 shows a numerical study of the nucleation radius, for various vicinity sizes,
|V|, as a function of p. Moreover the figure also presents the mean field estimation by
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an explicit geometrical calculation of the surface A(R) and using the critical condition
(1.12). One sees that the mean field approach matches perfectly with the data in the
large |V limit.

(b)

Figure 1.7: a) Critical radius of nucleation R/a as a function of p. As expected as
p — 1/2 the critical radius is zero, while as p — 0 the critical radius diverges. The
points correspond to the numerical simulations for different values of the vicinity size:
V| = {24,44,68, 144,304,696} as indicated in the figure. b) Estimation of the lower
bound of the probability P(p) of having a critical nucleation bubble of infected states,
for |V| =8, |V| =20 and |V| = 68 One notices that this probability takes-off around a
precise value of p.

However, a question remains open: what is the probability to obtain, ab-initio a
bubble with a radius larger than R.?7 This probability seems to be very small, because it
is proportional to the probability to obtain mR? sates +1 all together, that is

2
Piupble & prz =D P‘Vli(’;;% ) (1.14)

with R./a the function of p plotted in Fig. 1.7. Although, this probability P(p) is
quite small, it is a lower bound for the problem of Bootstrap percolation. If, initially, a
bubble has a radius greater than R.(p), then the system percolates, and the nucleation
bubble may not initially exist, but it may be built solely by the evolution, this provides
a better estimation of the probability P(p) of percolation.

VI(Re/a)*



Chapter 2

The Q2R Cellular Automaton

2.1 The Q2R model

2.1.1 The rule

The Q2R cellular automaton |!] is a network with N > 1 nodes, in which each node
k represents a spin with a discrete value (z;, = —1 or 2 = +1). The spins interact
with a neighbor V', moreover, the interactions can depend of the range of interaction
(one-dimensional case), as display in Figure 2.1(a). For the following, we shall restrict
the Q2R model, already introduced in section 1.1.3 in a two-dimensional lattice, for the
case of Von Neumann neighborhood, therefore, with the four closest neighbors (see Figure

2.1(b)).

Xk-l Xk Xk+1 ____________
(a) (b)

Figure 2.1: Figure (a) and (b) represent the interactions scheme for one and two-
dimensional cases. Figure (a) shows a chain with a r ratio-interaction, and Figure (b) a
square lattice of size N x N, with a von-Neuman neighborhood. In both cases, periodic
boundary conditions are employed.

This automaton is driven by the following two step-rule [1]:

19
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ot =a7 ¢ (Z x§> : (2.1)

1€V
where the function ¢ is such that

+1 if s#0

¢ (s) = (2.2)
-1 if s=0.

This two-step rule may be naturally re-written as a one-step rule with the aid of an
auxiliary dynamical variable:

t+1 t
yk - $k>

which when substituted into equation (2.1), becomes

GRS yw(sz). (2.3)

i€V

Note that the reversibility of the model corresponds to the equivalence of the inverse
function ¢ (3, #1) = 1/ (X;ey, #4), because from conditions of the equation (2.2),
one can show that the equation (2.3) is equivalent

¢ (Z z?) 7= Y (2.4)

i€V

Example

In the following, we will present a simple example of the evolution of a Q2R model. Let
be a lattice of size N = 5 x 5 as displays Figure 2.2. For simplicity, in the lattice there
are two colors: the red circles (o) correspond to states with values z;, = +1, and the black
circles (o), are states with values x; = —1. Also, we examine a case where the initial
configuration at time ¢ = 0 is the same at ¢ + 1 time, i.e., 2'=° = 4'=°, as show the Figures
2.2(a,b).

First select a spin in the initial configuration z'=° as shown in Figure 2.2(a). We
enclosed the particular spin with a square, then, we select the neighborhood which corre-
sponds to the initial configuration y'=° but for the state x{=° = +1. Now, if we perform

a sum over neighbors, this is ¢ (ZiEVk xt = O) = —1, using equation (2.3), the state
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Figure 2.2: A system of size N = 4 x 4, is present as an example for the dynamic of the
Q2R model. The states are; the symbol (e) for a state z; = 1, and the symbol (e) for a
state x; = —1 respectively.

changes from z; = 41 to zy = —1 at each time-step (all states are updated in par-
allel fashion). Figure 2.2(c) represents the evolution of the system, where the initial
energy F/ = —4 and initial magnetization M (¢ = 0) = 2. The final magnetization from
2t to 2! will be M(t = 1) = 0. In this case, the dynamics of the system conserves the
energy and the magnetization fluctuates during the evolution process.

2.1.2 Energy Conservation

Pomeau [5]| showed that the following quantity, which we call energy,
1
(i,k)

is preserved under the dynamics defined by the Q2R rule (2.3). The summation on equa-
tion (2.5) Z@'Jf) is over all states k together with their neighbors, ¢. This form is equivalent

to Z(i,k) =D kv, = D Zier'

In the following, we prove the energy conservation between the time ¢ and t 4+ 1. To
do that, let as compute the energy difference among the time ¢ and ¢ + 1 .

AE = E[{a:t+1,yt+1}]—E[{a:t,yt}] (2.6)

1 1
= —3 Z :B;?Hy;“ + 3 Z :E;yf (2.7)
(i,3) (7.,1)
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Because y;t' = af and 2t = 2} ¢ (30,¢y, 1), one gets that

1
AE = -5 ; [y;?(ﬁ <Z x}é) i — xéyf] (2.8)
27-]

keV;
1
AE = —5 > 2yl [qb (Z a:}@) - 1] =0 (2.9)
(4,9 keV;

We can see that the last equality by term is zero, because, if Zkew xt # 0 then, the
bracket is zero. On the other hand, if Zkev; z! = 0 the bracket does not vanish, but
the term in front Z@J) xz = 0 of the bracket cancels out terms. Besides, the energy is
bounded by —2N < E < 2N.

2.1.3 Staggered Invariants

As already suggested by [7], there exists a large number of period orbits, therefore it is
believed that Q2R possesses a large number of other invariants.

An example of additional conserved quantities, are the “staggered invariants” |32].
Indeed, for a square periodic lattice of even size L (N = L?), the full lattice may be
divided into two sub-lattices as follows: Let us denote k, and k,, the indices of the full-
square, then, we define the W sub-lattice by all points such that k,+k, is an even number,
while the B-lattice is characterized by the condition k, + k, being an odd number. (In
other words, these sub-lattices represent the white and black fields in the chessboard.)
Then, we define:

EV[{a"y'}] = —% > ol

kz+ky even 1€V

Bty = 5 S A

kotkyodd i€V

The conserved energy (2.5) may be re-written as E[{z',y'}| = EV[{z!, y'}] + EB[{2!, y'}].
Further,

J[{xt,yt}] = (=1 (EW[{xt,yt}] — EB[{xt,yt}]) , (2.10)
is also an invariant, i.e.,
J[{a' y' ] = J{="" "],
This extra invariant, splits the sub-space of constant E into a sub-set of constant £ and

constant J. The role of this staggered invariant in the macroscopic behavior will be
investigated in the future.
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2.1.4 The Magnetization

Another useful and important macroscopic observable is the magnetization M (), that is,
the sum of the states of the lattice for each time-step,e.g.,

M(t) = M[{a'}] =) af. (2.11)

This quantity M (¢) is bounded as —N < M(t) < N. Consequently, we can estimate
the standard deviation of Magnetization, considering the place where the average does
not change during time 7, i.e.,

tf M (t (2.12)
o (M) =/ (M?) — (M)>. (2.13)

The parameters ¢y and T are the initial and final times, respectively. Finally, the
magnetization is not conserved by the dynamics, however, this global variable can be
identified as the right order parameter [33].

2.1.5 Mean Field Approximation

To understand the global interaction of the system, we can reduce it using mean field
theory. Then, assuming that we are in a permanent regime, M(t) ~ M(t + 1) =~ (M).
From the equation of energy (2.5) and considering a Von Neuman neighborhood, it is
possible to approximate the sum

i g M)

therefore one obtains taht the energy may be approximated in the mean field limit by

M 2
= —= Zxkyz ~ > = —2m?N. (2.14)

Where
1

N

is the average magnetization per site a quantity that belongs to m € [—1,1].
Finally, the magnetization as a function of the energy is

m (M)
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m = +4/——. (2.15)

In next Section 2.2.2, we shall show that in the limit of large neighbors the mean field
approximation becomes accurate.

2.2 Dynamics of the Q2R model

2.2.1 Initial conditions

We have explored the evolution of the Q2R model in the long-time run and with different
initial random conditions of type,

) =yi " = Bi(p),

where By (p) is:
+1 with probability p

—1 with probability 1 —p (2.16)

Bi(p) = {
Here, By (p) is a probability function that can take boolean values with respect to p; if
p = 0 then the system will have only +1 states as initial condition, however, if the proba-
bility is p = 1/2 the initial condition will exhibit an uniform distribution of states, i.e., an
homogeneous distribution of +1 and —1 values into the lattice. The index £ represents
independent realizations over lattice sites. We have studied all possible pair of initial
conditions: {x!=0 = y#=} as given by equation (2.16).
First, we shall provide a brief overview of the dynamical behaviors and statistical prop-
erties in the case of one dimensional lattices. Then we proceed with two dimensional
lattices.

2.2.2 One-dimensional Systems

In this section we shall study the one-dimensional case. Take a chain of L = 256 sites.
Let be r the interation range, i.e., the site k interactions with all sites {k —r, k — 1,k +
1...,k+r}. In the present study we have considered the cases r = 2", where n may take
different values n = {0,1,2,3,4,5,6,7}, being r = 1, r = 128 the shortest and longest
range respectively.

Figure 2.3 shows the evolution of M(t)/N two different dynamics related to the in-
teraction range for the evolution in Magnetization. We have taken the case where the
range is r = 2 and the initial energy /N = —0.382, as shown in Figure 2.3(a). Here,
the magnetization fluctuates as AM/N = [0.4, —0.4], and its average is (M) /N = —0.01.
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Figure 2.3: The plot corresponds to the dynamics of magnetization versus time. In (a),
the system possesses an initial energy F/N = —0.382 and a interaction range, » = 2. On
the other hand, (b) exhibits a case where the interaction range is 7 = 16 and the initial
energy is E/N = —0.0003. In both cases the time evolution was ¢ = 4 x 10*

On the other hand, in the case where the interaction range is r = 16, (see Figure 2.3(b)),
the magnetization fluctuates as AM/N = [—0.3,0.2], but its average is zero.

It is important to remark the following fact: The dynamics depends on an interaction
range as well as the energy. Figure 2.4 plot the phase diagram for the average magne-
tization per site (M) /N, as a function of the re-scaled energy (E/rN). This function
has been normalized, with the purpouse of checking convergence for all curves to the
value E/rN ~ 0. Notice that in the mean field approximation equation (2.15) becomes
m=+/—FE/rN.

If the system takes the value r = 4 (the curve is represented with the symbol +), (M)
converges to an energy close to E/rN ~ —0.2. However, when we take as interaction
range r = 128, the curve converges to the value E/rN = 0. In the latter case, we have a
full interacting system. Moreover, when the latter condition of full interaction is satisfied,
m = \/—F/rN is equivalent to the one obtained by applying mean field theory.

Therefore, the one-dimensional case manifests a dynamics, where the interaction does
not show phase transition. This is coherent with the aim of the Q2R model, that is, a
model equivalent to the one-dimensional Ising model.

2.2.3 Two-dimensional Systems

Now, we consider the case of a two dimensional periodic lattice of size N = 256 x 256.
Moreover, we will develop extensive numerical simulations in the long-time run, with the
idea of generating the evolution of states as a function of the initial energy. Also, as it was
shown in a previous article [9], the Q2R cellular automata exhibits an important feature,



26 CHAPTER 2. THE Q2R CELLULAR AUTOMATON
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Figure 2.4: The average magnetization (M) /N as a function of E/rN. Here, we have
presented eight different interaction range, from » = 1 to r = 128. The continuous
line represents the result obtained by calculating using calculation of mean field, m =

v —E/rN.

namely the existence of a phase transitions, for given a specific energy, as it occurs in the
two-dimensional Ising model.

2.2.4 Ferromagnetic and Paramagnetic Behaviors

We have observed in the first place that with energies lower than a critical energy £ < FE,
(which is equal to E./N = —/2 ), the system will exhibit a dynamics called ferromag-
netic behavior. This behavior corresponds to a case where all the spins have a pre-
ferred orientation, which may be +1 or —1. To be more specific, if we take an energy
equal to E/N = —1.62, we can observe (Figure 2.5(a)) the behavior of magnetization
as function of time. This magnetization exhibits a fluctuating set of values in the range
AM/N = [0.870,0.895].

For this energy, the center of distribution is located close to the average (M) ~ (0.88.
However, in the accompanying (in Figure 2.5(b)) we can see the distribution function, in
semi-log scale, showing that the distribution is not Gaussian.

On the other hand, when E > F,., the system acquires a paramagnetic behavior.
This type of behavior corresponds to a homogeneous distribution of spins, i.e., there is no
preference spin orientation. In Figure 2.6(a), we show the evolution of the magnetization
when the initial energy is /N = —0.07. This, is different to the paramagnetic case,
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Figure 2.5: (a) Represents the dynamics of the magnetization versus time, for a system
with an energy E/N = —1.62. In this case, the system exhibit a ferromagnetic behavior.
(b) Represents the probability density distribution of the magnetization. The inset plot
the PDF in log scale.

because the dynamics fluctuates around zero: AM/N = [—0.015,0.015], being a behavior
without large fluctuations. Moreover, Figure 2.6(b) represents the evolution of the pdf
of (M) /N , which exhibits an average equals to (M) /N = 0. In such case, the system
exhibits a similar number of spins +1 and —1. Also, in this case, the histogram shows a
well defined Gaussian distribution.

2.2.5 Phase Transition

The Q2R model exhibits a phase transition for a critical energy, E.. This value is close
to the critical energy of the Ising model E./N = —/2 [31, 34].

As we can observe in Figure 2.7(a), we can distinguish three different regimes, when
starting with on initial energy E/N = —1.416. The first one, shows a fluctuation for
M (t)/N around the value (M) /N = 0.55. Analogously, for the second and third regimes,
the corresponding fluctuations are around (M) /N = 0 and (M) /N = —0.55 respectively.
Finally, the fluctuation will return around zero.

We can see a spontaneous change in the behavior of the magnetization from higher
to lower values. However, with an initial condition such that M < 0 (and E ~ Ec), the
system will evolve from negative to positive values of (M) /N.
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Figure 2.6: (a) Represents the dynamics of the magnetization versus time, for a system
with an energy E//N = —0.07. In this case, the system exhibits a paramagnetic behavior.
(b) Represents the PDF of magnetization. The inset show the PDF in log scale.

In this context, the distribution for the case of an energy E/N = —1.416 (Figure
2.7(b)), the pdf of magnetization shows the existence of three values where the distri-
bution is concentrated, and which corresponds to the evolution of the magnetization,
(M) /N = 0.55, (M) /N =0 and (M) /N = —0.55 respectively. Also, there is a higher
concentration around the average (M) /N = 0, because the system will remain a longer
time in those regions, before jumping to a different magnetization value.

However, this shows that if the system is taking values different from the critical
energy, there will be convergence to a paramagnetic or ferromagnetic behavior, as was
previously shown. On the other hand, it is interesting how the Q2R cellular automata
develops a very defined representation of a change of state similar to that the one which
generates the classic Ising model [2].

Consequently, from the evolution of the magnetization, it is possible to make a sta-
tistical description for the average of magnetization (M) (see Eq. 2.12), as well as, for
the standard deviation o (M (t)) (see Eq. 2.13), versus the initial energy E/N. Then,
the phase diagram of Figure 2.8(a) shows three specific behaviors, according to a given
energy. In this context, starting from the lowest energy E/N = —2 (Ferromagnetic state)
the curve begins to fall (or to rise) gently until it reaches a critical energy E., where, the
system exhibits a metastable behavior mean phase transition. Then, the curve converges
quickly to a zero value respect to the average magnetization (Paramagnetic state). More-
over, Figure 2.8(b) displays the standard deviation versus the Energy. Here, we can see
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Figure 2.7: Plots (a) and (c¢) show the evolution of the magnetization for the case where
their initial energies are E/N = —1.416 and E//N = —1.426 respectively. We can see that
the magnetization jumps between states. In both cases, Figure (b) and (d) display the

pdf for the respective magnetizations.

how the system exhibits a greater fluctuations around the critical energy E./N value.

During this research, we have observed in Q2R model a behavior which depends on
the specific region of energy considered. Moreover, our analysis has alway been performed

from a macroscopic point of view in terms of the observable of interest

(Magnetization).

However, as seen from a microscopic point of view, states can evolve into very specific

patterns.



30 CHAPTER 2. THE Q2R CELLULAR AUTOMATON

1 * . ‘\ T T T T T T T 0.08
0.75 [ Ferromagnetic
05 + Phase Transition Bl 0.06 r
0.25
5 X Paramagnetic >~ 004 |
< 0r :***ﬁﬁ‘**w; :
= ) =
~ S
-0.25 J
* 0.02
05 ¥
-0.75 # 1
L * 0 =
1 . . . : : : . . . I . . . . . . . . .
-2 -18 -16 -14 -1.2 -1 -08 -06 -04 -02 O -2 -18-16-14-12 -1 -08-0.6-04-02 0
E/N E/N

(a) (b)

Figure 2.8: Phase diagram of average magnetization (M) /N versus the Energy E'/N. One
can see, regions where the system shows a ferromagnetic and paramagnetic behavior, for
a given initial Energy, as well as, the critical regime. Figure (b) represents the standard
deviation of magnetization versus the energy. Clearly, we can see that the system exhibit
a maximum value when the energies are close to the critical energy E/N = —/2. The
continuous line represents the well known statistical mechanics calculation for the Ising
model M/N a2 25/16(\/2 + E/N)'/® (see below).

When the dynamics shows ferromagnetic behavior, there will be a preferred spin ori-
entation, as can be seen in Figure 2.9(a). The lattice only exhibits a small number of
—1 spins and a big number of +1 spins. Clearly, this shows that during the evolution
some states may change. However, when the initial energy gives rise to a paramagnetic
pattern, in the lattice there will be an equal amount +1 and —1 states which are randomly
distributed (Figure 2.9(b)).

Near the transition the dynamics, i.e., E ~ F,, the patterns display patches, with +1
and —1 states. Here, the patches are spins concentration which can keep a state on a finite
time, and then change to another state (see Figure 2.9(c)). Also, there will be zones where
the average magnetization is zero, because the spins are into a chessboard-like pattern.

2.2.6 Exact results from the Ising model in statistical mechanics

Finally, to illustrate the connection with the Ising model. One can get a relation between
the average energy and the average magnetization from the aid of the well-know formulas
by Onsager [31] and Yang [34]. Similarly, we can obtain a relation between the magneti-
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Figure 2.9: Snapshots of the patterns for three different energies. In Figure (a) correspond
a case where the system exhibit a paramagnetic behavior (EF/N = —1.62), Figure (b) is
a the case of a ferromagnetic behavior (£/N = —0.07). Finally, in Figure (c¢) shows a
pattern where the initial energy is close to critical energy (E/N = —1.416). The color
map, is the following: yellow represents the boolean variable at +1 and blue means that
the boolean variable is at —1.

zation fluctuations that corresponds to the zero-field magnetic susceptibility as a function
of energy following the work of Wu et al. [35].

Because all these calculations are done in the canonical ensemble, we shall compare the
macroscopic observable in terms of the inverse of the temperature, 5. The mean internal
energy as a function of 3 reads

E(B) _
T = — COth(Qﬁ) 1 + I%l_/ /71 — /iz sin (217)
where x and x; are:
sinh(2p) B 9 _

The transition point is characterized by the condition sinh(25.) = 1, that corresponds
to the critical energy E./N = —/2.

The resulting magnetization because [31]

M(B) 1\
N (1 B sinh4(2ﬁ)) ’ (2.19)
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and, finally, the magnetic fluctuations
AM? = (M?) — (M)?
are related to the magnetic susceptibility via
x=B8((M?*) = (M)°).
On the other hand the magnetic susceptibility has been reported to be [37]

xe =B (cou 11— BB +er 11— BIBIT) 4. (2.20)

where the 4+ sign correspond to the behavior for 5 > . or 5 < .. The numerical values
for the constants are:

co, = 0.9625817322
co. = 0.0255369719
ci, = 0.0749881538
¢ = —0.0019894107

From the numerical results obtained in this section, we have shown clearly the connection
of the Q2R model with the Ising model. From this set of equations that shows the
behaviors of the Ising model. Moreover, the theoretical curves Magnetization versus
Energy (see Fig.2.8(a)), and magnetic susceptibility versus Energy (see Fig.2.8(b)), this
verifies that the model is a good example for displays the dynamics between spins, and
also the dynamics can develop a phase transition when the energy takes the critical value.



Chapter 3

The Phase Space characterization

3.1 Generalities

The phase space of the Q2R system of N sites possesses 22V states, which is partitioned
in different sub-spaces of constant energy, which themselves are partitioned into a large
amount of smaller subspaces of periodic orbits or fixed points. Notice that, because the
system is conservative, there are neither attractive nor repulsive limit sets, all orbits are
fixed points or cycles.

This feature of the phase space is schematized in Fig. 3.1, where the constant energy
subspace shares in principle many cycles and fixed points. An arbitrary initial condition
of energy F falls into one of these cycles, and it runs until it comes back to the initial
configuration after a time 7', which could be exponentially long and it displays a complex
behavior.

Figure 3.1: Scheme of a sub-space of constant energy composed by a number of cycles
and fixed points.

In the following section we shall characterize the phase space of the Q2R automaton.

33
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3.2 Exact phase space calculation for very small lattices

3.2.1 Phase space 2 x 2

Let us consider, in the first place, the simplest version of a two-dimensional Q2R au-
tomata, this is, the periodic of a lattice of 2 x 2. As well shall see, the dynamics is
extremely simple and then, it is possible to perform manually all calculations.

The phase space is defined by a hypercube of dimension 8, e.g, composed of 28 = 256
vertices which represent the full set possible configurations. As shown in Figure 3.2,
the energy takes only five possible values, £ = {—8, —4,0, +4, +8}. However, the original
phase space is not only partitioned by the energy conservation rule, but by a large amount
of small cycles with different periods.

This fact suggests that it is possible define unknown invariants that constrain the
dynamics that rules in limit cycles. More precisely, for £ = 8 there are 4 configurations,
for an energy EF = —4 there are 48 configurations consisting in 12 cycles of period 4,
similarly for £ = +4 which constant energy set also consists of 12 cycles of 4 period.
Finally the case £ = 0 consists on 152 configurations divided in 36 cycles of 4 period,
and 4 cycles of 2 period. The full periodic structure of each set of energy is summarized
in Table 3.1.

B=—4 c=o oo  cmo  ce=m

E=0

Figure 3.2: Representation of the five subspaces which corresponds to a system N = 2 x 2.
Moreover, the five different subspaces of energies £ = {—8, —4,0, +4, +8}. Each subspace
shows a number of periods which depends on the particular energy of such subspace.

3.2.2 Exact Phase Space for the N =4 x 4 case.

The phase space for N = 4 x 4 the system exhibits 232 states and a phase space of dimen-
sion 32. The full distribution of states for the exact phase space for a N = 4 x 4 system
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Period

(F @12 |
—8 4 2121 0
—4 | 48 00| 48
0 152 || 0| 8] 144

4 48 00| 48

8 4 2121 0

Table 3.1: The distribution of periodic orbits for all energies in the case of Q2R in a 2 x 2
periodic lattice. The first column indicates the energy F, the second one, n(FE), shows
the total number of states with an energy E. The following columns indicates the total
number of states of period 7'

is presented on the next tables .

In the first column of the table 3.2, this present the values of energy. The second
column correspond to number of states for energy. On the other hand, from the third to
last column these present the periods for each values of energy. Finally, the tables 3.3
and 3.4 shows the continuity of the phase space.

As it can be seen form the data, the Q2R system for 4 x 4 possesses a number of 29
periods, moreover, this has fixed points for all the energies. However, the cycle longer
is 7' = 1080 and only correspond for the energies £ = —2 and F = +2. The full data
maybe summarized in a probability density of states with a given energy and period:
p(E,T) that is plotted in Figure 3.3(a). An important point is the symmetry on the
phase space, because we have the same quantity of states and periods, for positive and
negative energies. On the other hand, in Figure 3.3(b) we have taken some periods, where
clearly the phase space, develop a distribution symmetric around of the energies.

Even for small systems one notices that the number and the period of cycles varies
from energy to energy. However, the distribution of periods for a given energy presents
some robust behaviors that may be studied similarly, but it takes more lengthly process-
ing time because one needs to run the states and wait the complete cycles.

Let be n(T, E) the total number of cycles of period T" and energy E, of a system with
N sites ruled by Q2R, then one defines the probability density function

T x n(T, E)

p(EvT) = 92N

~ e Pl (3.1)

By the ratio of total number of states of period T" over the total number of states that
satisfies the following normalization rules:

QE) =228 S e B Ty and SO S e (B T) =1
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Period

[ E ] n®E 1 2 3 4 5 6 | 8 E 10 12 18
-32 4 2 2 0 0 0 0 0 0 0 0 0
-28 128 0 128 0 0 0 0 0 0 0 0 0
-26 256 0 256 0 0 0 0 0 0 0 0 0
-24 2720 32 1344 0 768 0 576 0 0 0 0 0
-22 11008 0 4608 0 1024 0 1536 0 0 3840 0 0
-20 57984 64 | 9792 0 13568 0 11520 9216 0 0 9216 0
-18 219136 0 19968 0 44032 0 48384 0 0 61440 15360 16128
-16 911088 88 | 26920 | 144 140528 0 131952 171776 0 122880 220032 0
-14 || 3244032 0 | 35328 0 285696 0 | 380160 294912 0 168960 777216 274176
-12 || 11734400 || 128 [ 51712 [ 384 | 688128 | 960 | 696192 1688576 0 1166400 | 3240960 516096
-10 || 38121728 0 | 66048 0 1323520 0 | 1362432 | 2547712 0 65280 8871936 2128896
-8 || 111191136 || 32 [ 89152 | 576 | 3305024 | 0 [ 2112000 | 10482688 0 245760 | 22628736 | 4644864
-6 || 264889088 || 0 | 96512 0 4457472 0 | 2700288 | 9093120 0 460800 | 51004416 | 6773760
-4 [ 511430528 || 128 | 90112 | 1344 | 4737280 0 | 4198080 [ 53696512 | 4032 | 368640 | 96278016 | 32251968
-2 ]| 763062272 || 0 [ 107520 | O 8868864 | 0 | 3188736 | 16793600 0 230400 [ 138407424 | 6580224
0 [[ 885216280 [[ 208 | 136376 | 0 [ 21223312 | 0 | 5621760 | 103893504 | 0 | 2334720 | 144804096 | 56254464
2 [[ 763062272 [ 0 [ 107520 | © 8868864 | 0 | 3188736 | 16793600 0 230400 [ 138407424 | 6580224
4 [[ 511430528 [[ 128 | 90112 | 1344 | 4737280 0 | 4198080 [ 53696512 | 4032 | 368640 | 96278016 | 32251968
6 || 264889088 [ 0 [ 96512 0 4457472 0 | 2700288 [ 9093120 0 460800 | 51004416 [ 6773760
8 [[ 111191136 || 32 | 89152 | 576 | 3305024 | 0 | 2112000 | 10482688 0 245760 | 22628736 | 4644864
10 || 38121728 0 | 66048 0 1323520 0 | 1362432 | 2547712 0 65280 8871936 2128896
12 || 11734400 || 128 [ 51712 [ 384 | 688128 | 960 | 696192 1688576 0 1166400 | 3240960 516096
14 3244032 0 | 35328 0 285696 0 | 380160 294912 0 168960 777216 274176
16 911088 88 | 26920 [ 144 140528 0 131952 171776 0 122880 220032 0
18 219136 0 19968 0 44032 0 48384 0 0 61440 15360 16128
20 57984 64 | 9792 0 13568 0 11520 9216 0 0 9216 0
22 11008 0 4608 0 1024 0 1536 0 0 3840 0 0
24 2720 32 1344 0 768 0 576 0 0 0 0 0
26 256 0 256 0 0 0 0 0 0 0 0 0
28 128 0 128 0 0 0 0 0 0 0 0 0
32 4 2 2 0 0 0 0 0 0 0 0 0

Table 3.2: Number distribution of the states as a function of £ and T' (Part 1), for the

case of 4 x 4 system size.

Here, Q(F) is the total number of states, this distribution of states is not known for this

system, but it decays exponentially in the energy in the tails.

3.3 The evolution of states in configuration space

3.3.1 Sensitivity to initial conditions

The sensitivity to initial conditions of Q2R has been discussed previously in Ref. |9]. In
fact, when starting from two distinct initial conditions, which share the same energy and
J, they will evolve along two different paths. As the distance in phase space is bounded,
these two cycles will diverge in a non-exponential way. However, the separation growth
between them is fast enough so as to be completely analogous with the concept of sensi-
tivity to initial conditions.
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Period
| E | 20 24 27 30 36 | 40 54 60 72
-32 0 0 0 0 0 0 0 0
-28 0 0 0 0 0 0 0 0 0
-26 0 0 0 0 0 0 0 0 0
-24 0 0 0 0 0 0 0 0 0
-22 0 0 0 0 0 0 0 0 0
-20 0 4608 0 0 0 0 0 0 0
-18 0 0 0 0 0 0 13824 0 0
-16 7680 73728 0 0 0 15360 0 0 0
-14 368640 147456 0 276480 0 0 235008 0 0
-12 614400 1645056 0 737280 0 245760 442368 0 0
-10 860160 3538944 0 1105920 1548288 4915200 1824768 4423680 0
-8 2549760 29177856 0 2580480 2064384 2150400 3981312 7925760 0
-6 13140480 42713088 0 0 22708224 21995520 5806080 9768960 27869184
-4 2826240 90584064 3456 | 2580480 | 39223296 29245440 53523072 | 18432000 0
-2 4423680 104472576 0 1382400 | 89510400 11304960 5640192 24330240 | 76898304
0 21427200 | 107237376 0 1474560 | 74317824 | 133048320 | 99975168 | 16588800 0
2 4423680 104472576 0 1382400 | 89510400 11304960 5640192 24330240 | 76898304
4 2826240 90584064 3456 | 2580480 | 39223296 29245440 53523072 | 18432000 0
6 13140480 42713088 0 0 22708224 21995520 5806080 9768960 27869184
8 2549760 29177856 0 2580480 2064384 2150400 3981312 7925760 0
10 860160 3538944 0 1105920 1548288 4915200 1824768 4423680 0
12 614400 1645056 0 737280 0 245760 442368 0 0
14 368640 147456 0 276480 0 0 235008 0 0
16 7680 73728 0 0 0 15360 0 0 0
18 0 0 0 0 0 0 13824 0 0
20 0 4608 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0

Table 3.3: Number distribution of the states as a function of £ and T (Part 2), for the
case of 4 x 4 system size.

To perform this study we require two close enough initial configurations. A first initial

configuration, {z, y}*=, is arbitrarily chosen. The second one, is built by swapping a single
site k in the previous configuration. This site is randomly selected such that the average
magnetization due to its neighbors is zero (that is 3.y 2; =0 or 3, y; = 0). In this
way, both initial configurations have the same energy. Finally, running independently
both initial configurations, a separation distance between both paths can be measured by
the equation.

dy(t)

> (k= 2l + vk — B4D)

N
k=1

with {z,y}" and {Z,7}' denoting two different sequences belonging to two different
cycles (see Figure 3.4). It can numerically be shown that dy(t) grows approximately as
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Period
| E | 90 | 108 | 120 | 180 | 216 | 270 | 360 | 540 | 1080
-32 0 0 0 0 0 0 0 0 0
-28 0 0 0 0 0 0 0 0 0
-26 0 0 0 0 0 0 0 0 0
-24 0 0 0 0 0 0 0 0 0
-22 0 0 0 0 0 0 0 0 0
-20 0 0 0 0 0 0 0 0 0
-18 0 0 0 0 0 0 0 0 0
-16 0 0 0 0 0 0 0 0 0
-14 0 0 0 0 0 0 0 0 0
-12 0 0 0 0 0 0 0 0 0
-10 0 1327104 2211840 0 0 0 0 0 0
-8 7741440 1769472 1105920 0 0 6635520 0 0 0
-6 0 19464192 2949120 0 23887872 0 0 0 0
-4 7741440 | 33619968 | 35389440 0 0 6635520 0 0 0
-2 0 76723200 | 42024960 | 15482880 | 65912832 0 30965760 | 13271040 | 26542080
0 0 63700992 | 33177600 0 0 0 0 0 0
2 0 76723200 | 42024960 | 15482880 | 65912832 0 30965760 | 13271040 | 26542080
4 7741440 | 33619968 | 35389440 0 0 6635520 0 0 0
6 0 19464192 2949120 0 23887872 0 0 0 0
8 7741440 1769472 1105920 0 0 6635520 0 0 0
10 0 1327104 2211840 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0

Table 3.4: Number distribution of the states as a function of E and T' (Part 3), for the
case of 4 x 4 system size.

t? (see Ref. |9] for details).

3.3.2 Levy flight structure

The Hamming distance is a parameter that can be used in order to understand the dy-
namics of the states in the hypercube. In the case N = 2 x 2, Table 3.1 shows the number
of states at a specific energy and period, but also, the distance between two consecutive
time steps {z,y'} and {21 41} until a cycle is completed.

1
i [fo '} Ay ) = o S (e =kl + T ). (32)
k

The evolution of the distance may change respect to the energy and initial configu-
ration. For example, when the energy is £ = —4, this exhibit 16 states which evolve at
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t

T

Figure 3.3: Figure (a) logarithm of the probability density function versus the energy E
and Period T, here, the plot exhibits all the states for the case 4 x 4. In Figure (b) shows
some various periods T' = {1,2,3,4,5,6,8,10,12} versus the energy E.

0.06

---E/N =14810
0.05 ||—E/N =1.4740
E/N =-1.4800
—E/N =1.4720
0.04

du(t)/4N

0 0.5 1 15 2

Figure 3.4: These plots manifest the sensibility to the initial condition for a system of size
N = 256 x 256. The Hamming distance between the two evolutions 2% and 2z in time
few initial conditions at the same energy.

a fixed distance dy = 4, similar to random walk like behaviour. However, there are 32
states where its distance changes at each time step, i.e., the states jumps from a state to
another making sometimes large jumps and sometimes short jump. This behavior, similar
to a Levy flight, indicates a possible anomaly diffusion [36, 37, 38, 39, 40, 11].
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3.3.3 Configuration space for a system 256 x 256

It can be observed that the behavior of almost any initial state may be characterized in
configuration space by means of an analogy with a random walk (or a variation of this
process), more precisely when we compute the distance among two consecutive steps.
Then, from the distance (3.2) is possible determine: if the jump step dy(t) has a fixed
length, we shall say that this corresponds to the case of a random walk [12], thus the state
diffuses in the phase space. However, if the step distance, dg(t) is different from one step
to another, then, the behavior will be that of a Lévy flight [13].

We performed a large number of simulations for different energies, in a system of size
256 x 256 in order to check the behavior of the sampling of the quantity E/N, only for
initial configurations of the form {x,y} and {—z, —y}, such that their values are in the
range —2 < E/N < 0.

In figure 3.5(a) one sees the evolution of dy(t) vs. time. One notices three distinct
behaviors: a first region corresponds to the case ' < E. , here, the evolution of the dis-
tance dg(t) behaves as a random walk, that is, each step possesses almost a fixed length.
Figure 3.5(c) quantifies this fact showing that for E/N < —1.54 the pdf of the distances
is well centered around (dy(t)) ~ 0.025 — 0.07, in this case its evolution always is respect
to the closer nodes in the hypercube. For larger energies E/N > —1.26 the pdf is peaked
and centered at (dg(t)) ~ 0.5, for this energy the evolution fluctuates around a quite
large mean distance, in this case the states move from a node up to an extremely faraway
node in the 2NV dimensional hypercube.

Finally, in the third case, that is whenever the energy is close of the critical energy
E~ FE.(—1.54 < E/N < —1.26) the pdf of the distances is spread among a wider region
(dg(t)) ~ 0.2 — 0.3, the motion of the states in the phase space looks similar to a Lévy
flight, that is the system may jump from one place to another in the hypercube and the
distance maybe either small or large (see figure 3.5(b)).

An important consequence is the amplification of the fluctuations of the distance dy(t)
near £ ~ E.. Figure 3.5(c) shows a plot of the standard deviation of the fluctuations of
dy(t) as a function of the energy for the system of size N = 256 x 256. These fluctuations
indicate a critical behavior around the critical energy £, = —+/2. This amplification of the
fluctuations of dy(t) confirms the previous qualitative behavior in the three mentioned
regions. Large fluctuations are consistent with a Lévy flight, however, small fluctuations
suggest a random walk-like behavior.
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Figure 3.5: (a) Plot of the Hamming distance between two consecutive steps: dp(t)
versus time, for a system of size N = 256 x 256. We can remark the fact that different
values of energy, F/N, generate roughly three different regions. (b) The probability
density function (PDF), for these three different regimes. (c¢) the standard deviation of

the Hamming distance o(dy(t)) versus the energy.



42

CHAPTER 3. THE PHASE SPACE CHARACTERIZATION



Chapter 4

Coarse-Graining and Master Equation

4.1 General Scope

Though the Q2R model is quite simple its dynamics is usually very rich as it has been
in previous chapter. Moreover, this conservative and reversible system appears to be-
have as a typical macroscopic system, as the number of degrees of freedom increases,
showing, among others, a typical irreversible behavior, sensitivity to initial conditions, a
kind of mixing, and it exhibits a phase transition. It is believed that this Q2R is a good
representation of an Ising model in thermodynamical equilibrium.

As already said, for a given energy the constant energy set with (2(E) states is parti-
tioned in different sub-spaces composed by periodic orbits or fixed points. An arbitrary
initial condition of energy FE falls into one of these cycles, and it runs until it comes
back to the initial configuration after a time 7', which could be exponentially long and it
displays a complex behavior. More important, the probability that an initial condition
exhibits such a complex behavior is finite |11]. Moreover, Q2R manifests sensitivity to
initial conditions, that is, if one starts with two distinct, but close, initial conditions, then,
they will evolve into very different cycles as time evolves |9]. In some sense, an initial
state explores vastly the phase space justifying the grounds of statistical physics.

In conclusion, the overall picture is : although for a finite size system the deterministic
automata Q2R possesses periodic dynamics so it is not ergodic, there is a huge number of
initial conditions that explore vastly the configuration space (this is particularly remark-
able for initial conditions of random structure). Therefore, one expects that a master
equation approach may be successful.

4.1.1 General formalism

Given a set of initial conditions with a fixed energy FE, the probability distribution
oF ({z,y}) evolves following a Perron-Frobenius like-equation

QEA = ﬁEQE (4-1)

43



44 CHAPTER 4. COARSE-GRAINING AND MASTER EQUATION

{z,y}'
{z,y}' ™

Figure 4.1: Cartoon of a cycle of period 7', for which the cycle is composed of T" states.

which, in principle, can be computed by using the microscopic evolution rule (2.3). In-
deed £ is easy to build: if the state {z,y}; at time ¢ evolves into {z,y}s, at time ¢ + 1,
then one sets the (i, k) components to 1, that is L% = 1. Checking all available elements,
Q(E), for a given energy we can build the huge, Q(E) x Q(E), linear operator, £L¥. This
matrix possesses a large number of blocks and zeroes revealing the existence of a large
number of cycles in the Q2R model (In some sense, £F is a kind of adjacency matrix of
a graph, the graph being the total number of existing cycles for a given energy).

However, this description is impractical because of the typical magnitude of Q(FE).
Therefore, the full phase space is reduced to a description using gross or macroscopic
variables, namely the total magnetization (2.11), instead of microscopic variables.

We proceed with a coarse-graining scheme as in Ref. [12]. Let’s define a non invertible
projection operator, I, that maps the original distribution function o into p;(M)

pe(M) =11 of ({z,y}) = > of.

states with (3°, zp=M)

Formally, oF may be seen as a vector of dimension Q(E), and p; as a vector of dimen-
sion N+1, indexed by M, hence IT is formally a matrix with N+1 rows and Q(F) columns.

Applying the projector operator on the Perron-Frobenius equation (4.1) one gets

p(M) = I of =11- L¥. of | =TI (L)' o, (4.2)

where of ({z,y}) is an initial distribution.
As explained in detail in Ref. [12], in general, it is not possible to reduce the original
Perron-Frobenius equation into a self-contained master equation.
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Following, Nicolis et al. |12, 13] we take an initial reduced distribution, g% ({x,y}), as
a combination of step functions in the aforementioned intervals:

ob ({z,y}) ZawM {z,9}). (4.3)

In equation (4.3) we have defined

The linear operator ¢ may be seen as a matrix with N 4 1 rows and Q(E) columns (a
state {z,y} which belongs to a column vector of dimension Q(F) and which maps onto a
single magnetization which may take N + 1 different values).

m({z,y}) =

This is the central assumption of the coarse-graining approximation. States with the
same magnetization are assumed to be uniformly distributed into the original phase space
(see the Ansatz (4.3)).

The coefficients aj; may be obtained by inverting (4.3) |[12]. The result is

an =Y o5 ({z, yhen({z,4}).

states

Therefore, )y is precisely the M-th component for the coarse-grained distribution po(M) =
k.
Thus, for this special type of initial distributions one has

o ({x,y}) = Zpo Jou({z,y}) = @' po.

Here, in the last equality, we have written explicitly pg as a N + 1 dimensional vector
and ' as a Q(F) x (N + 1) matrix. Therefore, the Perron-Frobenius equation (4.2)
becomes

po = T (LP) 4l py (1.4)
Notice that ¢f - II = I is the Q(E) x Q(F) identity matrix.
Therefore, defining the (N 4 1) x (N + 1) matrix W by

W = I-LF. (4.5)



46 CHAPTER 4. COARSE-GRAINING AND MASTER EQUATION

one is able to write the final reduced Perron-Frobenius equation, which will be of the form

Pri1 =W py. (4.6)

The linear operator, W, acts only in the subspace of constant F, but is spanned over
arbitrary values of magnetization, and at the same time the reduced density p is a vector
with its components indexed by M.

As the original Perron-Frobenius equation, W depends explicitly on the Q2R rule
through £F therefore, in principle, is possible to compute it explicitly. However, in prac-
tice, because of the complex and unknown structure of £ (in particular because of the
existence of a myriad of different periods for a given F) it is not a realistic task, because,
the matrix VW could be quite large.

However, the matrix YW can be further reduced following a second coarse-graining
process. This partition is defined through a finite number of sets of non overlapping inter-
vals: Il = [—N, Ml), [2 = [Ml,Mg), .. 'IK—l = [MK_Q, MK—1)> IK = [MK—laN]- (The
previous case (4.6) corresponds to K = N + 1.)

We can proceed as previously, defining a second non-invertible projection operator, ,
which maps the reduced distribution function p; into a discrete and shorter column vector
of dimension K: f; = (f1, fo, ... fx). Finally, we obtain a coarse-grained master equation
for the probability distribution [12, 13]:

fir=W- f.. (4.7)

Here W is named the transition probability matrix.

Important features of the master equation (4.7) are:

1. The probability vector f; should be positive and normalizable. Let 1 = (1,1,...1)
be a K-dimensional vector, then we set 1 - f; = 1. More important, because of
normalization, Zfil w;r = 1, one has Wt.1=1. This implies that the probability
is conserved under the evolution 1 - f;,; =1 - Wft =1-f=1

2. The Perron-Frobenius equation could be solved exactly, provided is given an initial
given distribution fo: f; = W'f,.

3. Because of the Frobenius theorem, there exists an eigenvalue which is one, \; = 1,
while other eigenvalues fall inside the unitary circle |\;| < 1 for i > 1. Let f., be
the Eigenvector associated with the Eigenvalue \; = 1; this is an invariant vector
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feq = erq-

4. In what it follows, we denote by x( the eigenvectors of W corresponding to A;.
Naturally one has x" = f.,.

5. The existence of an equilibrium state: lim; , f; = feq-

6. Because all elements in the WW-matrix are positive, any non negative initial distri-
bution remains non negative.

4.1.2  Explicit calculation for the transition probability matrix
|44

As already mentioned, to determine empirically the matrices W or W we cannot use
(4.5). Instead, we shall start with a magnetization sequence {---, M, 1, My, Myq,---}
obtained from direct numerical simulations. This sequence is always finite but it could be
exponentially long (so in practice infinite).

The transition probability matrix W may be found from the probability density func-
tions at time ¢ and £+ 1. The elements of the matrix are given by the following conditional
probabilities (Here we use a different notation than Ref. [12]):

P(Mt—i-l el,NM, e [k)
P(M, € I)
Here M, belongs to the interval I at time ¢, and M;; belongs to the interval I; at ¢ + 1.

Finally, the matrix W does not, depend on time, which is a feature of a Markov process.
The coarse-graining method is schematized in Fig. 4.2.

Wi = P(Mt+1 € Ii|Mt c ]k) =

4.1.3 The Chapman-Kolmogorov condition and time reversal sym-
metry.

The final expression for the probability transition matrix (4.5) found after applying the
formalism of Refs. |12, 13] follows directly from equation (4.4) and the Ansatz (4.3), which
implies ¢f - IT = I. These relations are equivalent to the so-called compatibility condition:

IT- (L5 pf = W
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Figure 4.2: The distribution p;(M) at a time ¢ is schematized in the distribution on the
left. The fraction inside the interval Iy, is distributed, after the evolution into a new dis-
tribution p;41(M) schematized in the diagram on the right. The normalized distribution
provides the k-th element of the i-th column: w;.

This compatibility condition (or Chapman-Kolmogorov condition) arises as a result
of the approximations done in Section 4.1.1, however it is not a general property of the
dynamics. For instance, by taking a complete cycle (¢t = T'), one readily gets

- (L5t =1,

(with I being the identity matrix) which, evidently, differs from W7, because W repre-
sents an irreversible behavior toward equilibrium. Therefore, the compatibility condition
is only valid as an approximation for a limited number of time steps which enters into a

particular sequence. The same argument holds for the reduced matrix W defined through
(4.7).

Let us call W™ the resulting probability transfer matrix after 7 steps, that is, by
computing W as a consequence of the evolution from ¢ up to ¢t 4+ 7, then, the Chapman-
Kolmogorov or compatibility condition for W reads

A

W — jim) g, (4.8)
where 7 = 11 + 7. In particular, for 7, = 75 = 1 one should satisfy

W =11 = 1,



4.2. SPECIFIC COMPUTATION OF THE TRANSITION PROBABILITY MATRIX IN VARIOUS SITU

Other compatibility conditions are

w® = . W’

we = . W(2),

w@w = . W(2)’

W = Ww.w®. W, etc.

W = e .y
W = WP, ete.

In section 4.2.3 we shall check in practice how good are these Chapman-Kolmogorov
conditions satisfied.

Finally, let us state an important result due to Pomeau |[15]. The K-time correlation
functions impose some restrictions on the W-matrix.

Because of time reversal symmetry, for all indices iy,i9,---ix = {1,2,--- K}, the
symmetry relation

WiyigWigig ** * Wige_qixg Wigiy = Wigig Wigige 1 °* * Wigip Wigiy (49)
must be satisfied.

In what it follows, we apply this coarse graining approach to compute the probability
transfer matrix for some particular cases.

4.2 Specific computation of the transition probability
matrix in various situations.

In this section we shall apply the coarse graining approach to the Q2R dynamics in the case
of a small lattice size. In Ref. [19] we have fairly explored the computation of the transition
probability matrix, in particular, in the case of extended systems (N = 256 x 256).
However, in this case the cycles are usually huge, therefore this general approach is not
really satisfactory. In this sense, we focus our effort in treating systems of moderate sizes,
namely N =4 x4, N =8 x 8, and N = 16 x 16, having all of them tractable cycles.

4.2.1 Robustness of the methodology.

In general for a system of small size, one is able to find some cycles for a given energy.
Building a time series for the magnetization { M (t)} = {M;, My, - - - Mr}, then one defines
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a partition on the possible values of the magnetization, as explained in a previous Sec.
4.1. In the cases considered here, it is always possible to use the finest possible partition,
that is, for the exact available values of the magnetization (something impractical in large
systems). In this case the partitions are composed by a set of N +1 (/N is assumed to be
even) well defined values M = {—N,—N +2,—-N +4,--- N —2 N}. That is for 4 x 4
the partition has a maximum of 17 elements, for N = 8 x 8 there are 65 elements, and
for N =16 x 16 the partition possesses a maximum of 257 elements.

A first result concerns the equivalence of the probability density function of magneti-
zation obtained via the time series of the magnetization and the equilibrium distribution
resulting from the eigenvectors of the transition probability matrix w. Hence, the results
arising from temporal averages and transition probability matrix into the configuration
space are consistent among themselves. This fact ensures a first validation of the method.
However, the transition probability matrix provides extra information on a system, among
them, the non-equilibrium properties, given by the spectrum of W.

Next, we shall describe the methodology for the case of a lattice of size 16 x 16 for an
orbit with £/ = —292 and period T' = 43115258.

The transition probability matrix W is constructed following the steps of the previous
section 4.1.2. But first, we shall verify that the master equation does not strongly depend
on the length of the time series for the magnetization. It is important to remark that we
think that this is a crucial step, because it allows us to compare explicitly the dependence
of the results on the partial length of the cycles, something which is not possible for larger
systems, because in these cases we shall never be able to build the complete period for
the time series.

To test the above, we shall use again the finest partition. In this case, the transition
matrix is of dimension 257 x 257 (so we shall not provide them explicitly) and we shall
characterize it by its equilibrium distribution, and the full set of eigenvalues of w. Fig.
4.3 (a) plots the equilibrium distributions f., for the total cycle T"and f7~ for the partial
cycle of length T*. Similarly, Fig. 4.3 (b) plots the set of 257 eigenvalues, denoted by
A for the same sequence, {M(t)}, but for four different lengths of the time series.

Visually it cannot be observed any substantial difference among the different values of
T*. Moreover, Table 4.1 compares quantitatively the mean square difference measuring
Q1 = |IFT" = foql P/ K and Q2 = 3K |\ = AT"|?/K. Here K is the number of partitions.

Notice that an important feature of the transition probability matrix is that its eigen-
values are real if the time series satisfies reversibility [15]. We have verified that the
coarse-graining approach applied to the full cycle with period T shows this important fea-
ture. Namely, the eigenvalues of the W matrix are real numbers. However, as we apply
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Figure 4.3: (a) Plot of the equilibrium distribution f, for the case of a 16 x 16 system size
with F = —292 (E//N =~ 1.14) and a cycle of period T' = 43115258 (the complete cycle).
The computation of f., is compared with shorter sequences of the same time series of
length T* = 10°, 5 x 105, & 20 x 108, (b) The set of 257 eigenvalues of the TW-matrix for
the same conditions of (b).

T 1 Q2
106 3.95 x 107° | 0.0038

5x 10° || 3.91 x 107> | 0.0020
20 x 10° || 3.84 x 107 | 0.0002

Table 4.1: Error estimation of the equilibrium distribution and the spectral decomposition
of the W matrix for different lengths of the time series.

the same approach to a partial sequence of the same cycle of length less than 7', some
eigenvalues become complex (typically located near the origin in the complex plane). This
is important, because in practice for larger size systems, one never closes a cycle, hence
only incomplete sequences are available, thus the matrix would not have, in general, pure
real eigenvalues. However, we emphasize that the existence of these complex eigenvalues
is spurious.

Finally, it is important to compare results for partitions of different size. First, we
compute the equilibrium distribution for three different partitions sets. More precisely,
for a 8 x 8 system evolving by Q2R at E' = 0 in a periodic orbit of T" = 672018.

Figure 4.4 (a) compares the three different coarse-graining partitions (containing 5, 11
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and 34 elements). Despite the evident differences among the coarse and the finer graining
partitions, one notices that both partitions exhibit the same accurate behavior of the
equilibrium distribution. Moreover, Figure 4.4 (b) compares the second eigenmode x?)
without any substantial difference among the partitions.

0.12 - : ‘ : — : 1 ; ‘ —
® W=5x5 10 ’ -4-W=5x5
¢ W=11x1 hit -8 =11x11
0.4l = W =34x 3 R TR | B T =34 x 34
L | | - 10 .‘ ! os //
0.08 ' L .
50 0 50
M
£ 0.06f . " 1%
: 4
0.04f 1 or
. .
0.02} . .
| | n
*
0 spampn’ . . . LV VP 0.5 ! : ;
-40 -30 -20 -10 0 10 20 30 40 -40 -20 0 20 40
M M
(a) (b)

Figure 4.4: (a) Plot of the equilibrium distribution f., vs M for a 8 x 8 system size
with £ = 0 and a cycle of a period T" = 672018 for three different partitions of the
magnetization values. The plot shows how all distribution functions lies under the same
curve. The inset shows the parabolic behavior in magnetization which after a fit reads
log foq = —M?/116. (b) Plot of the second eigenmode X corresponding to the eigenvalue
closest to the unit circle. One notices how all partitions produce similar results.

In what follows, we summarize the methodology for cases of size 4 x 4, 8 x 8 and
16 x 16. In all cases, the full cycles were considered, and we provide the finest possible
partition.

4.2.2 Exact calculation for various lattices.

We have studied in detail the case of a 4 x 4 periodic lattice, because the phase space
possesses 232 ~ 4 x 10% distinct configurations and the calculations can be completely
performed thus showing explicitly the method. It is shown that the coarse graining ap-
proach is fully applicable in the 4 x 4 lattice case. We used different partitions getting a
well defined probability transfer matrix w.

We shall explore few cycles for larger systems (8 x 8 and 16 x 16). The cycles in
these cases may be as long as desired for any practical purpose, so that the equilibrium
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distribution is calculated with enough precision.

In the case of 8 x 8, for various energies and the finest possible coarse graining, as a
sake of brevity, we omit explicitly the plots of the first eigenvector, fo,, as well as the
eigenvalues, because they are similar to the 16 x 16 lattice case.

The case of a 16 x 16 system size displays the most accurate equilibrium distribution
found in the current research. The fluctuations around the distribution are small, and
the eigenvalues seems to form a continuous spectrum (the difference among two consec-
utive eigenvalues is small). We have also explored a wide range of energies. The rank
of the matrices (that is for the finest partition) are K = 122 for £ = —332; K = 205
for F = —316; K = 197 for £ = —292; K = 129 for ¥ = —168; and K = 101 for £ = —92.

The equilibrium distribution, as a function of the magnetization, is plotted in Fig. 4.5
(a). Similarly, the spectral decomposition is shown in Fig. 4.5 (b).

In Fig. 4.5 (a) one notices how in the case of larger energies, say £ = —92 and
E = —168, the equilibrium distribution function is symmetric, under the change M —
—M, however as the energy decreases one sees that for the lowest energy, ' = —332,

it appears a spontaneous symmetry breaking, so that the equilibrium distribution is not
anymore an even function. The equilibrium probability may manifest a positive or nega-
tive magnetization (switching from one case to the other by changing the initial condition
via the transformation {z,y}=° — {—z, —y}'=°). Moreover, the energy £ = —316 case
shows an equilibrium probability density function that manifests bi-stability. Indeed,
these bi-modal distributions possess three peaks, one at M = 0 and the two other at
M = +£M, # 0. Finally, the width of the probability density functions increases near the
transition energy.

Fig. 4.5 (b) shows the spectral distribution of the probability transfer matrix that
defines the master equation. Already for a lattice of size 16 x 16 one observes how the
spectral distribution is almost continuous. One notices that the energies £ = —316 and
E = —292 possess the largest eigenvalues for a given index ¢. This means that, probably,
the largest eigenvalues occurs near the critical energy.

It is interesting to remark that the non-equilibrium is governed by those eigenvalues
close to one. The non-equilibrium features behave as slow modes. In the current, case
one has f; = Zfil a;\ix. Defining 0; = —log\;, one obtains the usual slow mode
relaxation. Moreover, the global behavior of the eigenvalues closest to the unity, represents
the transport coefficients |19]. Fig. 4.5 (b) indicates that \; = 1—~i, something suggesting
that the non-equilibrium features are governed by a Fokker-Planck kind of equations. The
behavior of the eigenvector agrees also qualitatively with this picture (see [19] for more
details).
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Figure 4.5: (a) Equilibrium distributions, f.q, for the case of a 16 x 16 system size, and
for the energies and periods: E = —332 and T' = 796398, £ = —316 and T = 4015624,
E = —292 and T = 43115258. We also consider £ = —168 and £ = —92 with periods
larger than T > 10%. (b) Eigenvalues of the W-matrix showing the existence of long-wave
relaxation properties.

4.2.3 The Chapman-Kolmogorov conditions.

We have checked the Chapman-Kolmogorov relations for the case of Q2R in a 16 x 16
lattice for the case of E = —292 and a periodic orbit of T' = 43115258. We have built five
different probability transfer matrices W (=1 ... W {=%)(See Sec. 4.1.3 for the definition
of W),
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First, we compared the matrices W (=2 and W=D W(Tzl), both of rank 197 x 197,
computing the distance among them, e.g., W(=2 and W=D . W=D via the usual
distance (the square indicates the product of a matrix by itself)

1 17 (r= 17 (r= 17 (r=
d= ﬁTr[(W( 2 _Wr=h gy =hy2)

In the current case, the matrices are similar up to d = 5.81 x 1075, More quantita-
tively, we look how good are the eigenvectors of different matrices, namely W=2) and
W=D W= To do that, we computed the ratio among the n-th eigenvectors of the
aforementioned matrices, that is,

q = &
where x® and y()_ are the n-th eigenvector of the matrices W =2 and W= This
quantity is plotted in Fig. 4.6. One notices that g, ~ 1 almost for all values of magne-
tization, but it also has an anomalous behavior near the nodal points of the eigenvector

xW, . In general the agreement of all this eigenvectors is satisfactory.
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Figure 4.6: Plot of the ratio g, for five eigenmodes for the case of a 16 x 16 system.

Next we check, the Chapman-Kolmogorov relations written in Sec. 4.1.3, comparing
the spectral properties of both matrices, namely the set of eigenvectors and its eigenvalues.

As it can be seen in Fig. 4.7 (a) the equilibrium distribution f,, matches perfectly for
different values of 7 = {1,2,3,4,5}. This proves that the equilibrium configuration, f.,,
is an invariant of the dynamical system. However, non-equilibrium properties do depend
on the sampling time, 7. Indeed, the eigenvalues corresponding to different probability
transfer matrices do depend on the choice of the parameter 7. This is not a surprise,
because it is expected that the eigenvalues, AET), of W should scale as )\Z(.T) = \], where
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Figure 4.7: (a) Equilibrium distributions, fe.,, for the case of a 16 x 16 system, and for
the energy £ = —292 and T' = 43115258. (b) Eigenvalues of the W-matrix showing the
existence of long-wave relaxation properties.

); are the set of eigenvalues of W= This scaling is shown in Fig. 4.7 (b) indicating
an anomaly because it does not work for the case 7 = 1, but the scaling works well for
higher 7. This deserves more careful study.
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4.3 Slow modes and transport coefficients

The approach to equilibrium follows from the already discussed solution f; = Wtfo, which
maybe expanded in terms of the eigenvectors of the W-matrix, getting f; = Zfil ;A
Therefore, the Eigenvalues near the unity behaves as slow modes. If one defines o; =
—log \; one obtain the usual slow mode relaxation:

K
Ji= Z ae”7x;. (4.10)
i=1

Moreover, the eigenvalues closest to the unity, represents the transport coefficients,
which we shall investigate in the following.

We have consider the cases of a 16 x 16 system size and a wide range of energies.
The rank of the matrices (that is for the finest partition) are K = 122 for £ = —332;
K =197 for E = —292 and K = 101 for £ = —92. We have showed in Figure 4.3(b) the
eigenvalues |\;|, ordered by decreasing absolute value, as a function of its order. As a first
sight we have the impression that \; ~ 1 — 34* (for i < 15) characteristic of a diffusive
mode, however for larger value of 7 one sees \; =~ 1 — 7 .

The Eigenmodes corresponding to ¢ = 2, to 4 are also plotted in Figure 4.8, showing
the usual behavior of a confined Eigenvalue problem, which does not seem to agree with
the diffusive mode.

A possible explanation of the behavior of the eigenvalues, A\; =~ 1 — 7, is in agreement

with a continuos limit approximation of the Master equation (4.7) leading a Fokker-
Planck-type equation:

AM—0 E

i (ua—f) = (W-1) g - =L (ﬁg—j@ +7M7>) RN

The slow mode dynamics is provided by the Eigenvalue problem:

—0p =g (B +vMy). (4.12)

=1 nd =H | M _%2
i = i = 11 23 )
o Yr a %) 5 e

which has a solution
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Figure 4.8: Slow modes of the case 16 x 16. Here we have presented X2, x5 and x4
Eigenmodes of the W matrices, for the energies £ = —332, £ = —292 and £ = —92
respectively.

where H;(x) is the Hermite polinomial of degree i which is a nonnegative integer: i =
0,1,2.... Though, the behavior of the Eigenvalues is not the good one for i < 15, the
behavior of the Eigenmodes seems to be the adequate.
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4.3.1 Pomeau’s reversal symmetry relation.

According to Pomeau [15], the microscopic time reversal symmetry imposes the symmetry
relation (4.9). For a rank K transition probability matrices, it is possible to verify that
there are K different required conditions (4.9). Therefore, to check this condition is only
possible for a moderate ranks K. For the case 4 x 4 all probability transfer matrices of
the Supplementary Information satisfy the Pomeau’s reversal symmetry relation.

For larger W matrices, say K > 9, we have not checked Pomeau’s relation because it
involves a cumbersome numerical calculation.

4.4 Appendix

4.4.1 Exact calculation for the 4 x 4 lattice.

Consider the case of a 4 x 4 periodic lattice. Though the Q2R dynamics is extremely
simple, the calculations are exactly realizable up to end and for all configurations, thus it
may explicitly explain the method. The phase space possesses 232 distinct configurations
which may be computed directly. The energy takes possible values ranging from —32 <
E < 32. We have characterized few special cases with energies and periods distributed
uniformly over the all possible values:

(E,T) = (—24,6) (—22,10) (—18, 54) (=8, 270), (=2, 1080) and (0, 120)

. In all cases below we shall take the finest partitions in which a magnetization belongs
into a well defined value from M = —16,... M = 16. Usually the interval is less than 17
and currently the rank of the matrices ranges from K =2 up to K = 9.

The eigenvalues and the invariant probability distributions (the corresponding Eigen-
vectors associated to the unique unitary Eigenvalue) of these matrices are:
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Table 4.2: Summary of the coarse-graining procedure for Q2R in a 4 x 4 system and for

a given energy F and period T'.
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We notice that the case £ = 0 is showed up in the finest partition. Actually, in the
finest partition this case the probability transfer matrix has a rank K = 9. But it has
three zero eigenvalues and two complex one. We interpret that the fine coarse graining
is not a good partition. This partition must no be an invariant measure as required in
Ref.[13]. Why does this happen in the present case?, and it does not happen in other
needs to be elucidated.

4.4.2 The Chapmann-Kolmogorov condition

1002561 234478 0 0 0
1237039 1237039
2344Q78 362248 462439 0 0
5406141 4158 5406141
W(l) — 0 46%4?’)5 79%?253 216983 0 (413)

443882
BETIOS8 SR BRETY 207013

0 2549358 728388 5098716
0 0 207913 730162

938075 938075

Finally, we emphasize the following remarks:

1. Both partitions are symmetric in the sign of M, further we observe that the equi-
librium probability are symmetric under the transformation M — —M.

2. The equilibrium probability are identically for the cases FF = 44, recovering a hid-
den symmetry of the system. However the non-equilibrium behavior is different
because the corresponding Eigenvalues have distinct signs. Notice, however, that
this “hidden symmetry” is apparently not observed in numerical simulations of the
Q2R model (see Fig. 2.8). A more careful inspection of the dynamics indicates
that in the cases of the initial conditions R2 and R4 (Fig. 2.8), the magneti-
zation is swapping constantly in time, for instance, if the sequence of values of
magnetization for R1 is { My, My, My, Ms, ...}, thus, the sequence for R3 would be
{Mo, — My, My, —Ms,...}. Therefore, the temporal average of the magnetization,
as computed in Fig. 2.8, would be zero for the cases of R3 and R4. Moreover, taking
an average but each every two steps one recovers the Ising bifurcation for positive
values of energies. Therefore, the symmetry among positive and negative energies
is recovered in the phase diagram.

3. It is noticed, that there is qualitative difference for distinct energies: for £ = —4 the
equilibrium distribution has a maximum for M = 0, while its maximum is located
at M = 0 for the case £ = 0, this is the precursor of the Ising transition, as observed
in Fig. 2.8.
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Chapter 5

Conclusions

The main goal of this thesis was studies the dynamics of the Q2R cellular automata, using
tools of the statistical mechanics. The model possesses different behaviors and features,
such as, reversibility, a conservative quantity and a phase transition, whose origin is based
from the well-know Ising model.

In the first chapter, we have presented the several features of different models that
possess a direct connection with the Ising model, such as, the Glauber-Ising time depen-
dent model, the Q2R cellular automata, the Schelling model for social segregation, the
decision-choice model for social sciences and economics and finally the bootstrap percola-
tion model for diseases dissemination. Moreover, the statistical descriptions were: Phase
transitions, Bifurcations and Phase Diagrams and most important, the existence of a core
principle, e.g., energy minimization which appears to be a robust feature of these models.
However, these presents distinct properties. The Glauber Dynamics does not preserve
neither the energy or magnetization, however the Q2R dynamics does preserve only the
energy but does not preserve the magnetization. The Schelling model does preserve only
the magnetization, but if 8 > |Vi|/2 the system’s energy is strictly a decreasing function.
Finally, in the infection model, the energy strictly decreases whereas the magnetization
is an increasing function of time.

Then, in the second chapter, we have introduced the core of this investigation, the
description of the Q2R cellular automata. Where, the numerical simulations in absence
of any numerical approximattion showed that the model exhibit ferromagnetic and para-
magnetic behaviors respect to the energy. Moreover, the main phenomenon of the model
is the phase transition, when one consider a system sizes N = 256 x 256 and a value of
energy E//N ~ —+/2 (called the critical energy). This energy connects the direct relation
with the Ising model.

On the other hand, the reversibility that exhibit the cellular automata, turn in, a rich
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dynamics characterized by a huge number of invariants which partitions the phase space
in terms of the conserved energy and a huge number of periodic cycles. These cycles can
be from a fixed point to long orbits, for the case of an 4 x 4 lattice, the longer cycles
was 1080 when the energy can take values £ = +2. However, using the definition of
the Hamming distance, the systems presents two type of behaviors similarly to a random
walk, and Lévy flight in the configuration space, typically, this type of behaviors has been
observed in the models that take a diffusive dynamics. This can be a good way for study
how conservative system can develop a behavior of type diffusive.

Finally, we have closed this investigation with the introduced of a coarse-graining
approach, that allowed us to write a coarse-grained master equation, which character-
izes equilibrium and non-equilibrium statistical properties of the system. We reviewed
the methodology and tested the consistency of results in lattices of different sizes. We
found that for well chosen partitions, this coarse graining technique is a powerful tool
to reduce the information of the whole system in such a way as to obtain a tractable
probability transfer matrix which simplifies the original master equation. A first central
property of this matrix, is the existence of an invariant probability distribution which
agrees with different coarse-graining procedures. Secondly, we computed the spectral
decomposition of the probability transfer matrix characterizing the non-equilibrium prop-
erties of the system. Finally, we checked the compatibility conditions, as well as the time
reversal symmetry conditions for short time steps. In many situations the methodology
is consistent and provides a complete statistical description of the system. However some
discrepancies appears which deserves caution. This study provided us with a systematic
approach for reducing the number of pertinent macroscopical variables resulting into a
manageable master equation.
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1 Introduction

The long time behavior of conservative and reversible systems with a huge number degrees of freedom usually
requires a statistical description which introduces distribution functions of the system. Irreversibility, equilib-
rium, and more important non-equilibrium properties surge from this probability and its evolution.

In this context, statistical physics starts from a number of, reversible and conservative, ordinary differential
equations for Newtonian particles; or, alternatively, with the Liouville description. This cumbersome problem,
even for modest number of particles, therefore one reduces (under some assumptions) to a kinetic description
which displays the irreversible behavior to equilibrium observed in macroscopic systems. The assumptions for
this approach are: i) a macroscopical system does not require a huge number of variable but a limited set of
macroscopic observables; ii) Only a coarse grained description of these macroscopic variables has a sense (that
is the impractical possibility to measure a quantity with infinite precision), iii) The robust instability of the
microscopic motions which is at the basis of the sensibility to the initial conditions and the ergodic hypothesis.
iv) A Stosszahlansatz which introduces explicitly a broken before-after symmetry of the probability distribution
evolution.

About 20 years ago, Nicolis ez al. [1,2] introduced a systematic corse graining on the macroscopical variables
and they were able to derive a master equation, for a reduced probability distribution function of the system. In
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the present paper, we shall apply this systematic approach to a conservative and explicit reversible cellular71
automata system. Consequently, we shall consider the Q2R model, introduced by Vichniac in the mid 80s [3],
which preserves exactly a kind of energy [4].

The main reason to apply the coarse graining approach to a cellular automata instead to a coupled system
of ordinary differential equations, is because a cellular automata is a discrete model with boolean entities as mi-
croscopic variables, therefore, there are no round errors neither approximations in the numerical computations,
hence, the system is both theoretically and numerically reversible and conservative.

The study of the dynamics and properties of the Q2R model has a long history. In 1986 Herrmann [5]
implemented the Q2R algorithm to study the two space dimensional Ising model in a microcanonical description.
He studied the global magnetization, obtaining an excellent representation for the magnetization as a function
of the initial conserved energy. Later, Takesue [6] focused on the possible realization of statistical mechanics
for reversible cellular automata, showing that under certain conditions the system may be described in terms
of a canonical description. His studies concerned explicitly all class of rule in the one dimensional case, the
Q2R being only a special case. However, the Q2R (90R in his terminology), is the analogue of an ideal gas
of particles with speeds +1 or -1, a system that cannot reach equilibrium in practice. It is ergodic only in the
thermodynamical equilibrium. More recently, in Ref. [8], one of us (SR) has studied numerically the irreversible
behavior and the existence of a spontaneous transition from a non-coherent state to a coherent state in the frame
of the reversible cellular automata Q2R.

The present article is organized as follows, the Q2R model,as well as its main properties are presented in
section 2 We briefly report the numerical studies of Ref. [8] in section 3 The coarse graining in presented in
section 4, and some examples are explicitly in next section 5 Finally, the slow modes and transport is discussed
in section 6

2 The Q2R Model

For simplicity we shall consider a regular two dimensional lattice with N = L?> >> 1 nodes, each node is only
seen by its four closest neighbors (von Neuman neighborhood), finally we use periodic boundary conditions.

Each node k possesses a discrete value x; that may take values +1 and -1. The Q2R rule considers the
following two step rule [3]:

y=aTl e x),
iev
where the function ¢ is such a that ¢(s =0) = —1 and ¢(s) = +1 in all other cases.
This two step rule may be naturally re-written as a one step rule with the aid of an auxiliary dynamical
variable [4]:

y;€+1 :)‘Ik
A=y oY ). (1)

icV

As shown by Pomeau [4], the following quantity, that we call by an energy
1
E[{¥ .y} =5 22, @
(i.k)

is preserved under the dynamics defined by the Q2R rule (1). Moreover, the energy is bounded by —2N < E <
2N.

Despite the existence of an invariant that is a kind of energy, it does not seem possible to speak about a
Hamiltonian discrete dynamics because the variables ' and y* and the energy E (2) are discrete variable and
quantities [4].
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The rule (1) is complemented with an initial condition x,=" and y;~° tﬁaﬁ\gg{}gpé‘e}gcébe r‘éofr%%%glls’gy in
the next section..

For a finite system size the Q2R automata is always periodic. This period is naturally shorter than (or equal
to) the total number of possible configurations with a given energy E (and necessarily shorter than the longest
possible period, which is the total number of configurations 22N ). Moreover, it has been shown numerically, that
Q2R could have clusters of small periodic motion [7]. However, in practice, for a large enough systems and
for random initial conditions, the observation of a periodic dynamics is really improbable. In general, there is a
huge number of initial conditions that are “almost” ergodic.

Similarly, one may ask about a “sensibility to the initial conditions”. In Ref. [8], it is shown numerically, that
if one starts with two distinct, but close, initial conditions, then, they evolve in very different paths as time goes
2, In some sense, an initial state explores vastly the phase space allowed. This is essentially the fundamental
reason why we may use the grounds of statistical physics for studying this problem.

In summary, although for a finite size system the deterministic automata Q2R is not ergodic, there is a
huge number of initial conditions that explore vastly the phase space, this is particularly remarkably for initial
conditions of random structure, in some sense the dynamic itself realizes a good sampling, so that a statistical
description is possible when the initial condition is random. For instance, take a random initial condition with a
given fixed energy. It is observed, that if the initial energy is smaller than a critical value, the system becomes
spontaneously ordered in average. This transition appears to be of the same class of Ising transition in magnetic
models. Therefore, despite the original system being conservative and reversible, for a large set of initial con-
ditions, the system self organizes into an average macroscopic state with a manifest order as we shall see in the
next section.

3 “Long-time” dynamics of the Q2R cellular automata [8].

In Ref. [8], we have realized numerical simulations of the Q2R model in 2D and we have explored different
system sizes N = 256 x 256 and N = 512 x 512. For the initial condition, we consider the following initial

boolean random realization
+1 withprobability p

—1 withprobability 1 —p ’ ©

Bi(p) = {

where, the index k represents the independent realizations over the lattice sites.

In Ref. [8] the special choice of initial conditions such that x;=% = /=0 = By(p). This choice is only for
convenience because it helps us to identify the initial energy in terms of the energy of ferromagnetic system.
Moreover, as stated in [5], this initial condition will be crucial in interpreting the statistical properties of the Q2R
dynamics in terms of the Ising model.

Typically, the dynamics shows in time a very random pattern of local magnetization, having patches with
magnetization +1 and patches with magnetization —1. Also, zones of zero average magnetization are present,
where the spins are in a chessboard-like pattern. The full patterns are difficult to classified and to characterize,
therefore we shall characterize them by a global quantity :

M(1) =M[{X}] =} x. )
k
which we call the total magnetization of the system. Naturally, M is also bounded —N < M < N, and the finest
grain description has a discrete separation of AM = 2.
A simple mean field estimation relates the magnetization and the total energy with of the initial condition
(3) with p, via the following relations: M/N = (2p — 1), and the mean field energy E/N = —2(M/N)? =
—2(2p—1)%

4The divergence of these two “trajectories” is not exponential because this distance cannot increase indefinitely in a finite system.
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< M/N >

- -1 0 1 2
E/N

Fig. 1 Magnetization curves as a function of initial energy for a 256 x 256 system size. The points corresponds to
different initial conditions. Accordingly with the a boolean random set of values, Bi(p), as described in equation (3), the
initial data is: R1 (e): xﬁfo :yﬁfo = Bi(p); R2 (M): x’kzo = fy’k:0 = Bi(p); R3 (V): xﬁfo = y}fo = —By(p); and, R4 (»):
0=y = —Bu(p).

A detailed characterization of the evolution, as well as, of the fluctuations of the magnetization has been
treated in detail in Ref. [8]. Briefly, after a transient the average magnetization depends mainly on the initial
energy. If the energy is low, one sees that the average magnetization evolves slowly in time to an “equilibrium”
state with an almost constant value plus weak fluctuations. For larger energies, the fluctuations enter to play an
important role. One may observe that the system is in an almost stable state, but then suddenly jumps into a
metastable state with zero average magnetization, and then jumps into an opposite magnetization state.

The plot of the average magnetization (in time and over the sites) versus the initial energy of the configuration
is done in Fig. 1. One sees that the magnetization spontaneously increases below a critical energy per site around
E./N = —1.4, close to the critical energy of the Ising model E./N = —v/2 [9,10]. Moreover, in Ref. [8] we
compare the magnetization as a function of the internal energy of the system showing a close agreement with
the numerical values.

4 Coarse graining and master equation for the probability distribution functions

Although the dynamics of the Q2R model cannot be ergodic, in the usual sense, it is quite random and it
possesses many aspects of chaotic systems, as sensibility to initial conditions, mixing, etc. providing the initial
state is random. Numerical studies shows that the premises of statistical physics are valid, in particular the
observables may be computed using the standard methods of statistical physics. In the following we shall
introduce statistical tools for the understanding the approach to equilibrium of this system.

Given a phase space D that contains all possible configurations of an state {x,y}, then p({x,y}) represents
the probability distribution function of the system to be in the state {x,y}. Naturally, the dimension of D is huge,
because it contains 22V elements, but the distribution function moves in a sub-space, of smaller dimension, of
all the configurations with an energy E fixed. The distribution p£({x,y}) evolves following a Perron-Frobenius
type equation

pia=<"pf

which, in principle, maybe computed after the microscopic rule of evolution (1).
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Fig. 2 The distribution p,;(M) at a time 7 is schematised in the left distribution. The fraction inside the interval I;, is
distributed, after the evolution into a new distribute p,;1 (M) schematised in the left diagram. The normalised distribution
provides the k-th element of the i-th column: wy.

The knowledge of the explicit the reduced Perron-Frobenius operator .#* is impractical because of the large
number of possible values of degrees of freedom. Therefore, usually one restricts the description to a reduced
distribution which is only a function of E and M. This reduced probability distribution function reads p,(M),
and satisfy a new master equation p, (M) = # p,(M), the linear operator #  acts only in the subspace of
constant E, but is spanned over arbitrary values of magnetization. As the original Perron-Frobenius equation,
W depends explicitly of the Q2R rule and maybe computed in principle. However, in practice, it is necessary
to reduce again the information via a coarse graining partition of the possible values of M. The partition is
defined through a set of no overlapping intervals®: I} = [-N,M;), b = [M;,M>), ... Ix_| = [Mx_>, Mx_1), Ix =
[Mk_1,N], and we denote the original distribution function p,(M) by a discrete vector of dimension K, that is :
p:(M) — f, = (f1, f2,--- fx). Notice that this probability vector should be normalizable to the unity, let be the
vector K-dimensional vector 1 = (1,1,...1),then 1- f, = 1.

Therefore, we construct a corse grained master equation®

fra=Wf, 5)
where W is the probability transition matrix defined via the following conditional probability:

P(Ml+1 S Ik th S Il)

wixk = P(Myy1 € I|M; € ;) = P(M, € 1)
y€l;

being M; at the interval I; at the time 7, and M,,; would be at the interval I; at z + 1.

Because of normalization, Zszl wir = 1, therefore the left hand plrodu(:td 1-W =1. This implies that the
probability is conserved 1- f,, | =1 W f;=1-f,=1.Finally, the W matrix does not depend on time, which is
a characteristic of a Markov process. The coarse graining method is schematized in Fig. 2.

To conclude this section, we shall discuss the equilibrium distributions, the general properties that the W
matrix should satisfy, as well as the conditions on the partitions.

The Perron-Frobenius equation maybe solved exactly, provided an initial distribution f, and the knowledge
of the W-matrix, indeed:

fi=Wf,. ©)

The power of the matrix w! maybe computed with the aid of the eigenvalues (4;) and eigenvectors (),) of Ww.e
Because of the Frobenius theorem, one eigenvalue, A;, is exactly 1, while others eigenvalues are inside the

PIf the systems posses more than one observable, one proceeds similarly.

“In the present article we use a different notation from the one of Refs. [1,2]. The vectors in Eq. (5) are column matrices, the matrices
are denoted as W, finally, the usual matrices product operates.

dThat is the transpose of 1 acting on W.

€We shall normalize the Eigenvectors as 1-); = 1.
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unitary circle |4;| < 1 for i > 1. Let us denote f,, by the Eigenvector associated with the Eigenvalue A; = 1, this
is an invariant vector f,, = w feq- This vector is, by definition, the equilibrium distribution.

The limit 1 — oo of equation (6), f.. = lim, .. W' f, = W f,, is well defined. Indeed, expanding the initial
distribution in terms of the eigenvectors':

K
fO = 2 ain7
i=1
one obtains that
K
ft = z O‘ia’itxi'

i=1

Therefore, in the limitz — oo, f,, =1 X, = X;-

Moreover, the equilibrium probability transfer matrix, Wed_ also exists, and it is built with K replicas of the
invariant vector f,, as columns: Wed = (feq,feq, . .feq) .

One may wonder if one realizes the same process but instead to look at the system at times ¢ and ¢ + 1, one
looks at time 7 and 7 42 or more generally at7 and t + T Let us call W(7) the resulting probability transfer matrix
after T = T} + T iterations, therefore it is easy to show that this matrix should verify the Chapman-Kolmogorov
condition,®

W — W) W)

In particular, for 7 = 2 one has
W =W oW =W,

which is true for conditional probabilities, because of the relation P(M; 5 € Ik|M; € I;) = ¥ ; P(M; 12 € It|M; 41 €
I;)P(M, 41 € I;|M,; € I;), which is equivalent to the right hand side.

At this respect, there are some open questions:

- Is T =1 the pertinent time scale to define W? One may wonder if the system is Markovian in the shortest
time scale, that is one may think that the system possesses a characteristic time scale, such a that beyond this
time, the system becomes Markovian.

-Which is the adequate value for 7' to describe the system with the present approach? A detailed study at
this respect deserves more work.

Finally, though in practice the choice of partitions is done in a pure qualitative way, it is crucial to have an
idea how the phase space evolves in time under the dynamical system. In Ref. [1], it is considered a Markov
partition in which case the boundaries of the intervals [; are kept invariant by the dynamics. This is easy to
precise a in a small degrees of freedom system, because of the existences of fixed points, separatrices and so
on. In the present case the qualitative behavior of the phase space is vastly unknown. In some cases a negative
magnetization stay negative, in some others it passes to be positive, etc Therefore, a not precise rule maybe
extracted.

In the following section we provide some examples of the procedure.

5 Examples

5.1 Exact calculation for the 2 x 2 lattice.

Consider the case of a 2 x 2 periodic lattice. Though this is the smallest possible version of the Q2R automata,
and the dynamics is extremely simple, the calculations are exactly realizable up to end, therefore it shows
explicitly the method. The phase space possesses 22*4 = 256 distinct configurations which maybe computed

fRec.alling that the initial distribution should be normalizable: 1- f, = 1, hence, one has the condition Zf: 1 @ = 1, however there is
a extra free condition and we shall impose ¢ = 1.
2Actually it is sufficient to verify the case of T» = 1: W) =W ..
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directly. The energy takes possible values E = {—8,—4,0,4,8}. AmoAngP(I):%%]grjrtl),IZX C(’)qnﬁgégig;lls Ia’vEe an
energy E = —8; 48 configurations have an energy E = —4; 152 configurations have a zero energy (E = 0);

finally, 48 have an energy E = +4 and 4 of them have an energy E = +8.
The magnetization may take values —4,—2,0,2,4, and we shall realize as an example two distinct partitions.

5.1.1 Coarse grained partition

First, let us take a partition of three intervals: I} = [—4,—2], L = [0,0], & I3 = [2,4], that is, the partition splits
the cases of magnetization, greater, smaller and equal to 0. Let us consider the case of E = 0, that is 152 distinct
configurations of the phase space.

Among them, they are distributed with the following magnetizations: 38 with M < 0, 76 with M = 0 and 38
with M > 0. Let us take the 38 configurations with M < 0, after one step of the Q2R algorithm, the 38 initial
states end as following: 8 of them remain in the same partition with M < 0, 22 of them pass to M = 0 and 8 of
them get a positive magnetization. Therefore the first column of the W matrix is (8/38,22/38,8/38), naturally
their sum is the unity. In a similar way one can build systematically all the other cases".

The W-matrices read for distinct energies (we shall omit here the cases with E = +8 which are not mixing
cases):

4/51/2 0 4/19 11/38 4/19 0 1/24/5
We— g=|(1/5 0 1/5], Wg_o= | 11/19 8/19 11/19 |, Wg_y=[1/5 0 1/5
0 1/24/5 4/19 11/38 4/19 4/51/2 0

As a first sight we observe a symmetry property between the cases Wg—.4. We shall discuss this fact later. The
eigenvalues and the invariant probability distributions (the corresponding Eigenvectors associated to the unique
unitary Eigenvalue) of these matrices are:

{1,4/5,-1/5}, E=—4 (5/12,1/6,5/12) , E = —4
A={ {1,-3/19,0}, E=0 and f,={ (1/4,1/2,1/4), E=0 )
{1,-4/5,—1/5}, E=4 (5/12,1/6,5/12), E=4

5.1.2 Finest grained partition

The finest grained partition consider the exact values of magnetization M = {—4,—2,0,2,4}, then the 5 x 5
matrices are:

01/4 0 00 00 3/38 00 00 0 1/40
11/21/2 0 0 01/44/191/40 00 1/21/21
Wee 4= |[01/4 0 1/40 |, Wg_o=|11/28/191/21 |, Wg_y=|01/4 0 1/40
00 1/21/21 01/44/191/40 11/21/2 0 0
00 0 1/40 00 3/38 00 01/4 0 00

The corresponding Eigenvalues and invariant probability distributions are:

{1’%<1+\/§)’_%’i(1_‘/§)’0}’ E=—4 (1/12,1/3,1/6,1/3,1/12), E = —4
A= {1,—% (3+\/4ﬁ),7—g(%—3),0,0}, E=0 fo,=2 (3/76,4/19,1/2,4/19,3/76), E=0 (8)
{17_%(1+\/§),_%7%(\/§_1)’0}’ b4 (1/12,1/3,1/6,1/3,1/12) E=4

hThe present calculation is recovered in the first column of Wg_g.
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Despite the evident differences among the coarse and the fine graining partitions, one notices that both partitions77
predicts at least qualitatively the same behavior of the equilibrium distribution.

Finally, we emphasize the following remarks:

1. Both partitions are symmetric in the sign of M, further we observe that the equilibrium probability are
symmetric under the transformation M — —M.

2. The equilibrium probability are identically for the cases E = +4, recovering a hidden symmetry of
the system. However the non-equilibrium behavior is different because the corresponding Eigenvalues have
distinct signs. Notice, however, that this “hidden symmetry” is apparently not observed in numerical simulations
of the Q2R model (see Fig. 1). A more careful inspection of the dynamics indicates that in the cases of
the initial conditions R2 and R4 (Fig. 1), the magnetization is swapping constantly in time, for instance, if
the sequence of values of magnetization for R1 is {My,M,M>, M3, ...}, thus, the sequence for R3 would be
{My,—M\,M,,—Ms,...}. Therefore, the temporal average of the magnetization, as computed in Fig. 1, would
be zero for the cases of R3 and R4. Moreover, taking an average but each every two steps one recovers the Ising
bifurcation for positive values of energies. Therefore, the symmetry among positive and negative energies is
recovered in the phase diagram.

3. It is noticed, that there is qualitative difference for distinct energies: for E = —4 the equilibrium distribu-
tion has a maximum for M # 0, while its maximum is located at M = 0 for the case E = 0, this is the precursor
of the Ising transition, as observed in Fig. 1.

5.2 Sampling for a 256 x 256 system size.

We shall consider now a very large system in a lattice with 256 x 256 sites, for this case it is not possible
to perform all possible configuration to build a probability transfer matrix, therefore we consider a reduced
sampling.

In practice for a given p, we use a sample of 10* states, but among them, only a fraction of these states
have exactly the same energy. Then, these states maybe expanded by a factor two by taking changing {x,y} —
{—x,—y}. For instance, for an energy E/N = —1.8082 only 4882 states posses the same total energy. In
this particular case, one notices that the distributions are well separated in two distinct cases with positive and
negative M.

Moreover, the dynamical rule does not allow any transfer of states being at —M into states at +M, hence
the system is well separated in phase space. Mixing is possible only between close magnetization regions. It is

tempted to write
« 10
w=(51):

But this partition does not consider all the possible values of M because the interval contained M = 0 is empty.
One may cure, this singular behavior, adding a small number of configuration with zero magnetization, and
using the partition: M >0, M =0 and M < 0. But the resulting the W matrix should be also close to the identity
matrix, therefore any coarse grained distribution f,, is invariant.

For a larger energy, the magnetization mixes among states having negative, positive, and null values of
magnetization. Below we reproduces a probability transfer matrix for E/N = —0.0466:

1/2 2/5 0
W=|[1/211/151/2
0 2/15 12

The corresponding Eigenvalues and invariant probability distributions are:

A={1,1/2,7/30}, f.,=(0.174,0.652,0.174). )
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One may see, that qualitatively the cases of large and low energies d‘éﬁﬁ%@%@&é&hté@i@@%@i@r of
the previous sections.

6 Slow modes and transport coefficients

The approach to equilibrium follows from the already discussed solution f, = W'fy, which maybe expanded
in terms of the eigenvectors of the W -matrix, getting f, = Zlel o;Al x;. Therefore, the Eigenvalues near the
unity behaves as slow modes. If one defines 0; = —logA; one obtain the usual slow mode relaxation: f, =
2{; 1 0:e~ %" x.. Moreover, the eigenvalues closest to the unity, represents the transport coefficients, which we
shall investigate in the following.

We have consider the case of a 256 x 256 system size with an energy E/N = —1.445, which is closest to
the energy of Ising transition therefore big fluctuations are expected. The magnetization runs over the interval
M € [32768,52448]. We have performed a uniform partition with a AM = 24, getting a 820 x 820 matrix, which
we shall not write for obvious reasons. Fig. 3 displays |A;|, ordered by decreasing absolute value, as a function
of its order. As a first sight we have the impression that A; ~ 1 — B> (for i < 15) characteristic of a diffusive
mode, however for larger value of i one sees A; =~ 1 —7i .

The Eigenmodes corresponding to i = 1, to 5 are also plotted showing the usual behavior of a confined
Eigenvalue problem, which does not seem to agree with the diffusive mode.
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Fig. 3 Slow modes of the case 256 x 256 for an energy E /N = —1.445 with a uniform partition in M inside the interval
M € [32768,52448] such a that AM = 24 which gives a 820 x 820 matrix. a) The first 50 Eigenvalues as a function of the
index i. b-e) The first 5 Eigenmodes of the W matrices. The Eigenmode %, corresponds to the invariant probability vector.
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A possible explanation of the behavior of the eigenvalues, A; &~ 1 — ¥i, is in agreement with a continuous
limit approximation of the Master equation (5) leading a Fokker-Planck-type equation:

17 9 9P

A}&}E()(fml_fz):(w_i)fz - —a—Mw(;—MﬂLYMy)- (10)

The slow mode dynamics is provided by the Eigenvalue problem:

—o<p=aiM(13<p’+yM<p)- (1D
which has a solution
. v\ -ne
o;=7i and (p,»:Hi(M\/%>e 2B,
where H;(x) is the Hermite polynomial of degree i which is a nonnegative integer: i = 0,1,2.... Though, the

behavior of the Eigenvalues is not the good one for i < 15, the behavior of the Eigenmodes seems to be the
adequate. This exploration deserves a more deep study.

7 Conclusions

Though this article presents an overview of the method, we can see that if the partitions are well done, this
coarse graining technique is a powerful tool to reduce the information of whole system in a tractable probability
transfer matrix which simplify the original master equation. One central property of this matrix, is the existence
of an invariant probability distribution vector (the eigenvector with unitary eigenvalue), which is the coarse
grained equilibrium probability distribution of the system. The studied cases agrees, at least qualitatively, with
the numerical simulations.

This study may provide the non-equilibrium properties of the system as the slow mode behavior presented
in Section 6 A deep study of the present overview seems to be necessary, which is in realization.

F.U. acknowledges support from the Programma de Becas de Doctorado CONICYT and SR and ET ac-
knowledge the FONDECYT grants N 1130709 and 1120329 respectively.
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Abstract This chapter discuss several features and connections arising in a class
of Ising-based models, namely the Glauber-Ising time dependent model, the Q2R
cellular automata, the Schelling model for social segregation, the decision-choice
model for social sciences and economics and finally the bootstrap percolation model
for diseases dissemination. Although all these models share common elements, like
discrete networks and boolean variables, and more important the existence of an
Ising-like transition; there is also an important difference given by their particular
evolution rules. As a result, the above implies the fact that macroscopic variables like
energy and magnetization will show a dependence on the particular model chosen.
To summarize, we will discuss and compare the time dynamics for these variables,
exploring whether they are conserved, strictly decreasing (or increasing) or fluctuat-
ing around a macroscopic equilibrium regime.

1 Introduction

The Ising model, introduced in the early 1920s, by Lenz [1] and Ising [2] as a
thermodynamical model for describing ferromagnetic transitions has evolved as one
of the most prolific theories in the twenty century opening a huge number of new
areas of knowledge (for an historical review see [3]). The importance of the Ising
model raises in its universality and robustness, indeed despite its simplicity, this
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model has been the starting point for the emergence of various subfields in physical
(and social) sciences, namely, phase transitions, renormalisation group theory, spin-
glasses, lattice field theories, etc.

In the current contribution, we shall discuss four distinct applications of Ising-
based models with applications to both statistical mechanics as social sciences. The
first one is devoted to the Glauber-Ising time dependent model with applications to
decision-choice theory in economics and social sciences. In the 60s Glauber [4],
introduced an stochastic time dependent rule to mimic the statistical properties of
the original Ising problem. Glauber’s dynamics has been considered in the context
of social sciences by Brock and Durlauf [5, 6], and, more recently, by Bouchaud [7].

The second topic is Q2R automata model introduced in the 80s by Vichniac [8].
The Q2R! possess time reversal symmetry, which is at the core of any fundamental
theory in physics. Moreover, the temporal evolution of this automata conserves a
quantity which is closely related to the energy of the Ising model [9]. We are interested
in this model because is a natural starting point for studying the statistical and typical
irreversible behavior of reversible systems. As shown in [10], this system evolves
in an irreversible manner in time towards an “statistical attractor”’, moreover the
macroscopic observable, the so called global magnetization, depends on the value of
the initial energy following a law which is exactly the one obtained theoretically by
Onsager [11] and Yang [12], more than 60 years ago. Moreover, in [13] it is shown
how this model exhibits the same features of Hamiltonian systems with many degrees
of freedom, that is, a sensibility to initial conditions, positive Lyapunov exponents,
among others.

The third model that we shall discuss in this article concerns the Schelling model
of social segregation, introduced in the early 70s by Thomas C. Schelling [14-16].
This model became one of the paradigm of an individual-based model in social
science. Schelling’s main contribution is that shows on the formation of a large scale
pattern of segregation as a consequence of purely microscopic rules. More recently,
it has been shown that the Ising energy, which is a good measure of segregation, acts
as a Lyapunov potential of the system is driven, under particular conditions, by a
strictly decreasing energy principle [17].

Finally, we shall discuss a model for dissemination’s disease known as Bootstrap
percolation, first introduced in the late 70s by Chalupa et al. [18]. In this model a
healthy individual may be infected if the majority of its neighbors are infected. On
the other hand an infected individual never recovers, so it remains infected forever.
This model has been used as a model for disease’s propagation. One of the most
important questions arising is the determination of the critical number of infected
individuals to contamine the whole population.

The paper is organized as follows, in Sect. 2, some common features, as well as,
the precise rules for each particular model are explicitly described. Next, in Sect.3
the main dynamical behavior, the salient properties and the phase transitions are
shown and explained, for each of them. Finally, we conclude.

1Q by four, quatre, in french, 2 by two steps automata rule as explicitly written below, and R by
reversible.
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2 Ising-Based Models

2.1 Generalities

2.1.1 The Lattice and the Neighborhood

All models discussed below, display similar features, the system consisting of a lattice
with N > 1 nodes, in which each node, k, may take a binary value S;(r) = +1 ata
given time. Each node k on the lattice interacts, in general, with all other individuals,
with an interaction coefficient J;; (i denotes an arbitrary node). But in particular, a
node, k, may interact only with a finite neighborhood denoted by V.. The number of
neighbors for site k, | V|, is the total number of non zero J;; for each node. In Fig. 1
we show, as an example, four possible lattice configurations.

2.1.2 The “Energy” and the “Magnetization”

We define the macroscopic observables of the system, by analogy with the original
Ising model of ferromagnetism, as follows:

1
E[{S}] = —EszkSi(t)Sk(t), ey
ik

(a) (b)

e

(c)

5

Fig.1 Examples of lattices and neighborhoods. We illustrate explicitly: a an arbitrary network with
a random number of neighborhoods; and three periodic regular lattices in two space dimensions:
b a square lattice with a von-Neuman neighborhood of 4 individuals (the original lattice of the
Ising model with the nearest neighborhood); ¢ a square lattice with a Moore neighborhood of 8
individuals, and d a hexagonal lattice with 6 neighborhoods
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N
MI{S) =D Si(0). )
k=1

These quantities will be the pertinent observables, and we shall use them to classify
the distinct cases that we will be described in the next sections.

2.2 The Time-Dependent Glauber-Ising Model

Glauber [4], in the 60s, introduced a dynamical model for the study of the Ising
model. The rule governing Glauber’s model is the following:
Let, the local magnetization at the site k and at a time ¢, be:

Ue(t) = B+ D JuSi(0), 3

with B being an external magnetic field. Then, the spin’s value at the next time step,
t + 1, will be
Se(t + 1) = sgn(Ux (1)), (4)

thatis Sy (r + 1) = +1if Ug(r) = 0 and S;(r + 1) = —1 if Uy (r) < 0. We call (4)
the deterministic rule. In probability language, if Ui (t) > 0, then S (¢ + 1) would
be +1 with probability 1, and it would be —1 with probability 0. This rule is updated
in parallel fashion.

Next, this deterministic rule may be modified by a probabilistic rule, in the fol-
lowing way:

+1  with probability p =
St +1) = &)
—1 with probability p =

1
1+¢PUc®

Notice that in the limit 8 — o0 one recovers the deterministic behavior (4), while
in the limit 8 — 0 one reaches a completely random (binomial) dynamics regardless
of the value of U, that is S (¢ 4 1) would be +1 with probability 1/2.

The Glauber rule is indeed a Markov chain which manifests, in a perfect way,
the statistical properties of the Ising phase transition for the case of Von-Neuman
neighbourhoods, and it also agrees with the mean field approximation for the case of
a large number of neighbours. Finally, nowadays the Glauber dynamics is the starting
point for numerical simulations of spin glasses systems with random values for the
Jix coefficients.
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2.2.1 Random Decision-Choice Model

Let us consider now a random choice model [5-7] in the context of social sciences.
An individual takes a choice based on a combination of decision quantities, namely
an individual “decision parameter” f;, a “global decision” or “public information”
parameter F(¢) (which could be included in the previous individual decision para-
meter) and a “social pressure” Zi Jie Si (1).

Nexttake,> Uy (1) = fi+F @)+ > JiSi (1), and follow the Glauber deterministic
dynamics (4) or more generally the Glauber random dynamics (5).

Due to both, the Ising-like feature as the Glauber Dynamics evolution rule, a phase
transition is known to appear. This transition favors the decision into one or another
of the two options of the binary variable.

2.3 The Q2R Automata

The Q2R rule considers the following two-step rule which is updated in parallel [8]*:

+1 if Zi JixSi(t) #0
Skt +1) =S —1) x (6)
-1 if Zi JieSi(t) =0

Naturally, it is possible to add, without any difficulty, an external magnetic field
B. However, some caution should be taken into account: the model works if U (1) =
B+, JixS; (1), may vanish, therefore, B and the J; factors should be integers. For
instance in the case of a finite neighborhood, B + |Vj| should be an even number.

The rule (6) is explicitly invariant under a time reversal transformation ¢ + 1 <
t — 1. Moreover, as shown by Pomeau [9], the following quantity, that we may call
an energy, despite not being exactly the energy (1)

1
E[{s@®), 8¢ - Dl =—3 D TaSe®)Si(t = 1), @)
ik

is preserved under the dynamics defined by the Q2R rule (6). Moreover, the energy
is bounded by —2N < E < 2N.

The rule (6) is complemented with an initial condition Sy (t = 0) and S (r = 1)
that will be described more precisely in the next section.

2The so called “perceive overall incentive agent function”, by Bouchaud [7].

3This two-step rule may be naturally re-written as a one-step rule with the aid of an auxiliary
dynamical variable [9].
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2.4 Schelling Model for Social Segregation

Schelling model, is also characterized by a binary variable S; which may take values
+1 and —1. We shall say that an individual S; at the node k is “happy” at his site,
if and only if, there are less than 6; neighbors at an opposite state. 6 is a tolerance
parameter that depends in principle on the node and, it may take all possibles integer
values, such that 0 < 6, < |Vi| (we exclude the cases 6, = 0 and 6; = |V,| from
our analysis). The satisfaction criterion reads*

An individual S is unhappy at the node k if and only if:

Vil = 2m(=1) < [Vil = 265, if S = +1
> si= ®)
ieVy 2np(—1) — | V| = 26 — | Vi, if S = —1.

Here ny (+1) is the number of neighbors of S that are in the state +1; and, nz (—1)
the number of neighbors of S; in the state —1, naturally ng(4+1) 4+ ni(—1) = | Vi|.

Having labeled all different un-happy individuals, one takes randomly two of
them in opposite states (one +1, and one —1) and exchanges them. Even when this is
not exactly the original Schelling’s rule, the present Schelling’s protocol is a simpler
one. In any case, it can be modified in a straightforward way to include for example
vacancies [19, 20], different probabilities of exchange [19], multiple states variables
[21], etc.

If k and [ are these random nodes, then the evolution rules:
Sp(®) = S+ 1) = =S8 (8), §@) = S+ 1) =—=S5(5)

and for all other nodes i # k & [ remain unchanged S; () — S;(t+1) = S; (¢).

The protocol is iterated in time forever or until the instant when one state does
not have any unhappy individuals to be exchanged.

Notice, that Schelling criteria (8) is deterministic, however the exchange is a ran-
dom process, therefore two initial configurations will not display the same behavior
in detail, but they will evolve to the same statistical attractor [22].

#The criteria (8) may be unified in a single criteria [ 17] (multiplying both sides of the two inequalities
by Sk): an individual Sy is unhappy at the node k if , and only if, S > Vi Si < |Vk| — 26, which
is a kind of energy density instead of the threshold criteria found in Glauber dynamics (4).
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Schelling’s protocol, defined above, has a remarkable property: if 6; > % then
any exchange k <> [, will always decrease the energy

1
ElSH = =520 >SS ©

k ieVy

The energy (9) follows from (1), whenever J;z = 1 for neighbors and Ji; = 0
otherwise.

For a proof, we refer to [17]. We shall only add the following remark: if 6; > %
then the evolution necessarily stops in finite time. This is because the energy (9) is

bounded from below by Ey = —% fo:] | Vk| and because the energy (1) decreases

strictly. On the other hand, for 6, < %, the energy may increase or decrease after

an exchange indistinctly.

2.5 Bootstrap Percolation

We shall consider the problem of bootstrap percolation for a given lattice [18]. As
in the previous models, each node k interacts with | Vj| neighbors, the neighborhood
defined by the set Vj. As before the state, S; may take values +1 and —1 depending
on if it is “infected” or not. At a given “time” the state Sy () evolves into Sy (¢t + 1)
under the following parallel rule: if a site is not infected, and if the majority of its
neighbors are infected, then the site becomes infected [23]. On the other hand, if the
site is already infected it keeps its infected state.

Summarizing, the evolution rule, which is updated in parallel, may be written in
the following general way:

if Sg(t) = —1 and ZSk(t) > 0, then Sp(t + 1) = +1, (10)
k

otherwise, if S;(z) = 1 then S;(z + 1) = 1.

From the dynamics it follows directly that the energy (9) decreases in time, E (t +
1) < E(t), as well as the magnetization increases in time: M (¢t + 1) > M (t). As in
the case of the Schelling model, because the energy is a strictly decreasing functional,
and because it is bounded from below in a finite network, then the dynamics always
stops in finite time.

Finally, let us comment that a problem that has increased in interest in recent times
deals with the question of how the total infection depends on the initial configuration
which is randomly distributed and such that a site will be at the state Sy = +1 with
a probability p [24].
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Table 1 Recapitulation of the four above mentioned models, and its main conservation properties

Dynamics Evolution criteria Energy Magnetisation
Glauber sgn(B + Not conserved Not conserved
> JikSi (1)
Q2R > JiSi(1) =0 Conserved Not conserved
Schelling sgn(Sk (1)) Zi v Not conserved?® Conserved
Si (1) < |Vi| — 26k
Bootstrap Zievk Si(t) >0 AE <0 AM >0

Af O > |Vk|/2 then AE <0

Naturally, if initially p &~ 1/2, then every site has in average the same number of
Sy = +1 states and S; = —1 in its neighborhood, then the system would percolate
almost in one step. However, as p decreases, one can define a probability, P(p),
which is the probability that the system would percolate at the end of the evolution
process. At the end this probability can be numerically determined.

2.6 Recapitulation

The afore mentioned models have in common a threshold criteria (4), (6), (8), and
(10) the subsequent dynamics follows different rules. Therefore one should expect
distinct properties.

The Glauber Dynamics does not preserve neither the energy or magnetization,
however the Q2R dynamics (Sect. 2.3) does preserve only the energy but does not
preserve the magnetization. The Schelling model (Sect. 2.4) does preserve only the
magnetization, butif 6, > |V;|/2 the system’s energy is strictly a decreasing function.
Finally, in the infection model of Sect. 2.5, the energy strictly decreases whereas the
magnetization is an increasing function of time (Table 1).

3 Ising Patterns, Transitions, and Dynamical Behavior

In this section, we shall roughly describe the essential phenomenology of the Ising-
like models and rules described in the previous section, whether they are governed
(or not) by the rules of conservation of magnetization energy.

3.1 Glauber and Decision-Choice Model Dynamics

The time dependent Glauber-Ising model shows a very rich phenomenology. As such,
the model’s behavior has been explored using mean field approximation (the Curie-
Weiss law) as well as by direct simulations of the rule (5). Here our macroscopic
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Fig.2 Snapshots of the patterns for the Glauber-Ising model. The simulationis fora N = 256 x 256
periodic lattice with von Neuman neighborhood. Moreover we take fy = 0 and F = 0. The
parameter of “irrationality” and the magnetization averages are, respectively: a corresponds to a
paramagnetic phase for 8 = 0.53 and (M) /N = 0.0006; b a critical phase for § = 0.82 and
(M) /N = 0.02; and ¢ corresponds to a ferromagnetic phase g = 1.8, and (M) /N = 0.39

(M/N) N
(a)lf‘// e0®000 00000 (b)liﬂ‘//‘\) seveccccosse
. .
. ® F=01
0.5 05| ] F=02
eF—0 o F=-01
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.
.
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0.5 1 1.5 ] 0.5 1 1.5 8

Fig. 3 Average magnetization (M) versus . The average are taken from long time simulations of
approximately 20000 time steps. In both cases the random external field is settled to zero f; = 0.
a Case of F =0;and b Cases of F = +0.1 and F = 0.2

observable is the total magnetization per site, namely M (t)/N and were M(t) is
defined in equation (2). In what it follows, we will only show results for the direct
simulation of the Glauber-Ising model (4) and we shall use the terminology of social
sciences [7]. In Fig. 2 we show three distinct states characterized by different values
of the parameter of “irrationality” B8,% and a null value for the public information
parameter F(¢).

In Fig. 3 we show two different figures for the mean magnetization (M) /N versus
the irrationality parameter $, divided into two groups depending on the non-zero or
null value for the public information parameter F (¢). Each point, was calculated for
a total of approximately 2 x 10* time steps. We can readily observe the appearance
of a bifurcation for the case F = 0 and § greater than 8. = 0.8.

Therefore, the time dependent Glauber-Ising model displays a transition from a
paramagnetic to a ferromagnetic phase for 8, ~ 0.8 which is in agreement with the
critical threshold value of the Ising model, B8, = log(1 + «/5) ~ 0.881...

Sn statistical physics, 8 is the inverse of the thermodynamical temperature, 8 ~ 1/T.
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Fig. 4 Three types of magnetization dynamics for a running time of 7 = 3 x 10* time steps, and
considering three different values of energy. a Corresponds to an initial energy E/N = —1.50, b
corresponds to aninitial energy £/N = —1.39 and ¢ corresponds to aninitial energy E/N = —1.08.
The three figures show the fluctuations in the macroscopic observable M (t)

3.2 Q2R Dynamics

We shall now present the dynamics of the Q2R model for the case of von Neuman
vicinity (the coupling interaction J;; = 1 for the four closest neighbors), which is
the original Q2R cellular automata [8].

The time evolution of magnetization, given an initial energy value E /N, provides
a direct observation of the spin’s dynamics and fluctuations. In what it follows, we
will base our results and analysis taking a periodic grid of size N = 256 x 256.

When the initial energy value is E/N = —1.50, which refers to Fig.4a, it can
be seen that the system’s dynamics fluctuates without significative changes in the
magnetization’s value. This means that the overall set of spins are oriented in a
preferred direction. This is known as a ferromagnetic state. If we raise the initial
energy value and take E/N = —1.39, which corresponds to Fig. 4b, the dynamics
abruptly fluctuates because of the closeness to the critical energy value: E./N [10].
Finally, if the initial value of the energy is greater than in the previous cases, e.g.
E/N = —1.08, Fig.4c shows how the dynamics of magnetization decays reaching
a zero mean value (M) ~ 0.

Similarly, Fig. 5 shows some characteristic snapshots of the spin field patterns at a
given time for the same energy per site. When the energy valueis E/N = —1.50 (see
Fig.5a), it can be seen how the spins are organized with a well defined magnetization,
namely S = 41 or Sy = —1. This is a ferromagnetic phase. However, when the
initial energy valueis £ /N = —1.39(close to the critical energy), as shown in Fig. 5b,
the system generates patterns characterized by well defined clusters of states. Finally,
for an energy E/N = —1.08 (see Fig.5c) the system shows an homogeneous state
with the spin distributed more or less randomly, which characterizes a paramagnetic
phase.

Also it can be shown that the average magnetization (M) depends critically on
the initial energy, E /N, of the system (Fig. 6).5

%Q2R is a micro canonical description of the Ising transition, therefore we use the energy in absence
of any temperature. In [10] it is shown the excellent agreement among the Q2R bifurcation diagram
with the Ising thermodynamical transition.
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(a) (b) . ©
: x SN R § ey

Fig. 5 Snapshots of spin structure at T = 3.5 x 10* considering three initial values. a Corresponds
to an initial energy E/N = —1.50 and a magnetization M /N = 0.79, b corresponds to an initial
energy E/N = —1.39 (which is close to the transition energy E/N = —+/2) and M/N = 0.455;
and ¢ corresponds to an initial energy E/N = —1.08 and M/N = 0.012

Fig. 6 Phase transition N =256 x 256
diagram for the average =y *
Magnetization (M) versus 0.8 *
initial energy E /N, for a 0.6
grid size N = 256 x 256 0.4 i
0.2
S o ?t*t*m
-0.2
-0.4 i
-0.6
-0.8 1 4
X **
-2 -18-16-14-12 -1 -08-06-04-02 O
E/N

Finally, we can state three fundamental features from the above phase diagram.
First, there exists a zone in which the system stays into a ferromagnetic state when
the value of the energy is lower than the critical energy E < E.. Secondly, there
is a second order phase transition at E./N = —+/2 and it is formally equivalent
to the Ising critical temperature [10]. Third, when the initial energy value is greater
than the critical energy E > E., the system presents a paramagnetic phase, with a
magnetization value (M) = 0.

3.3 Schelling Dynamics

We shall characterize the dynamics of Schelling model for the particular case in
which the system is a two dimensional periodic lattice, and each site possess the
same neighborhood consisting in the | V| closest individuals. We shall consider also
that the parameter 6 is uniform, that is, 6y = 6.
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(@ _ () - (0

Fig. 7 Schelling’s patterns for various satisfaction parameter 6 in a square periodic lattice of
N = 256 nodes. The vicinity is uniform and contains |V| = 20 elements. a 6§ = 5; b 6 = 6;
c6f = 9;d 60 = 10 (eventually this case the two spots observed merges into a single one, this
coalescence dynamics, however, it happens after a longtime); e 6 = 11 and f 6§ = 15, are two
cases whenever the energy is a strictly decreasing function so the dynamics stops in finite time,
in the former case this happens after a time so segregation is possible, however in the later case
the dynamics stops shortly after the Schelling algorithm started. For 6 = 15 we say that this is a
frustrated dynamics, because the system cannot reach the ground state energy because the dynamics
stops after one of the population is completely happy

Figure 7 displays an example of typical patterns arising in the Schelling’s model.
As it can be observed, the dynamics depends critically on the value of the tolerance
parameter 0, defined above. More precisely, if 6 is larger or smaller than 6., = |V |/4,
6. = |V|/2,and 6., = 3|V|/4. The initial state was chosen randomly with a binomial
distribution, that is Sz (¢ = 0) was +1 with probability 1/2 and —1 with the same
probability. Hence, the total magnetization is M (+ = 0) ~ 0, and it is kept fixed
during the evolution.

The simulation shown in Fig. 7, corresponds to a Schelling rule with a vicinity of
|V| = 20 elements. Clearly three different cases can be distinguished, and at least
three transition points, namely 6., = |V|/4, 6. = |V|/2,and 6., = 3|V |/4. For 1 <
0 < |V|/4 (see Fig. 7a) one observes a non-segregated pattern, the states Sy = 1 are
swapping, more or less randomly in the system, without a formation of any kind of
large scale structure. In a coarse graining scale, for instance, the scale of the vicinity,

. . . _ l .
the coarse-grained magnetization, namely, m = Wl > cv, Si(t) is zero everywhere,
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as well as the energy.’ In this situation, it is tempting to make an analogy with the
Ising paramagnetic phase. For |V |/4 < 6 < |V|/2, one observes how a segregation
pattern arises (see Fig.7b, c). More important the coarse-grained magnetization is
locally non-zero, and the pattern presents domain walls, which are characteristic of
a ferromagnetic phase in the Ising-like terminology. For |V |/2 < 6 < 3|V|/4, one
observes also segregation (see Fig.7e), but the dynamics stops in a finite time. The
final state is a quenched disordered phase for which one may conjecture an analogy
with a “spin glass” phase, and the appearance of a kind of long-range order. The case
6 = 3|V |/4 in (see Fig.7f) it is interesting because, although the are some islands
of segregation, the system also recovers its original heterogeneity, with almost a null
coarse-grained magnetization m.

3.4 Bootstrap Percolation

The spin dynamics for the case of Bootstrap percolation of Sect.2.5 is always char-
acterized by an energy decreasing principle, moreover because a +1 spin never flips
to a —1, the magnetization is mandated to increase up to a constant value because of
the impossibility to infect more individuals, or simply because the system has been
fully percolated by the +1 spin states.

As said in Sect. 2.5, we shall consider a random initial state with a fraction p
of the spins at the state Sy = 41 (that is, a fraction p of the population would be
infected).

It is observed, that for a moderately large value of p, say p =~ 1/2, the sys-
tem becomes unstable very fast, percolating the S, = +1 state everywhere almost
instantaneously.

However, as one decreases p, the system presents a well defined scenario. Figure 8
shows the typical evolution of a percolation pattern in time. More precisely, the
system nucleates bubbles of infected states (S = 4-1) and two scenarios are possible,
either these bubbles continues to grow or they stop (compare Fig. 8b, c). In analogy
with the instability of a first order phase transition, it should exist a critical radius of
nucleation that depends explicitly on p.

This critical radius of nucleation maybe estimated in the limit of large vicinity, in
other words, in the range of validity of the mean field approximation. Let be p the
fraction of infected sites initially distributed randomly in the system and a the radius
of the vicinity (ma? = |V|). We shall add an infection bubble with a radius R (see
Fig.9a). A Sy = —1 state in the boundary of the infected circle will become infected
it >, Sk(t) = 2p— 1)(wr* — A(R)) + A(R) > 0, where A(R) is the surface of the
portion of the circle inside the infection bubble (see Fig.9b). Therefore, the bubble
will infect neighbors and will propagate into the system, if

"Notice that, as already said, the total magnetization is constant in the Schelling model. Therefore
we cannot match the Schelling transitions observed here with the phase transition for the cases of
the Glauber-Ising and the Q2R models.
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Fig. 8 Bootstrap percolation’s patterns at six different time steps. The network is a square periodic
lattice of N = 2567 sites with a uniform vicinity of |V | = 24 sites. a Display the initial random
state with an initial fraction 0.2 of Sx = +1 (that is, a given site is +1 with probability 0.2, and
—1 with probability 0.8); In b one observes the nucleation of bubbles, which eventually would
propagate the +1 state over the random phase; In ¢ one observes that some infected bubbles have
not reach the critical size and they do not propagate; however, in d big bubbles invade the system
transforming the interface in a front propagation over the whole system (e) and (f)

Fig. 9 a Scheme for the (@)
mean field estimation of the

critical radius of infection.

The gray region represents

the random initial data with a

fraction p of +1. b Details of

the geometry for the

calculation of A(R)

A(R 1-2
L - 717 (11)
ma? 2(1 — p)
The surface A(R) follows from a direct geometrical calculation. In the large R/a
limit, one gets

AR) 1 a

ra® 2 37R

+O(R™),
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Fig. 10 a Critical radius of nucleation R /a as a function of p. As expected as p — 1/2 the critical
radius is zero, while as p — 0 the critical radius diverges. The points correspond to the numerical
simulations for different values of the vicinity size: |V | = {24, 44, 68, 144, 304, 696} as indicated
in the figure. b Estimation of the lower bound of the probability P (p) of having a critical nucleation
bubble of infected states, for |V | = 8, |V| = 20 and |V| = 68. One notices that this probability
takes-off around a precise value of p

therefore, one concludes that the critical radius of nucleation scales as

a  3ap

Figure 10 shows a numerical study of the nucleation radius, for various vicinity
sizes, | V|, as a function of p. Moreover the figure also presents the mean field
estimation by an explicit geometrical calculation of the surface A(R) and using the
critical condition (11). One sees that the mean field approach matches perfectly with
the data in the large | V| limit.

However, a question remains open: what is the probability to obtain, ab-initio a
bubble with a radius larger than R.? This probability seems to be very small, because
it is proportional to the probability to obtain 7 R? sates +1 all together, that is

4a-p)?

~ TR? VI(R./a)* VIS5
Pouvple & p™Re = plVIR/O™ o plT oz,

with R./a the function of p plotted in Fig. 10. Although, this probability P(p) is
quite small, it is a lower bound for the problem of Bootstrap percolation. If, initially, a
bubble has a radius greater than R.(p), then the system percolates, and the nucleation
bubble may not initially exist, but it may be built solely by the evolution, this provides
a better estimation of the probability P (p) of percolation.

4 Discussion

We have shown how different models amalgamate their underlying behavior under
the common principle of the Ising-based models: Phase transitions, Bifurcations and
Phase Diagrams and most important, the existence of a core principle, e.g., energy
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minimization which appears to be a robust feature of these models and which would
require a deeper consideration.

It is a remarkable fact, however, how despite a continued interest over the last
century, the Ising model continues to fascinate and amaze us, not only on it’s original
context, but also in some other areas of knowledge were it has been applied. The
“paramagnetic-ferromagnetic” transition can be recovered in all models described
here, with deeper consequences, for example, in the field of human behavior, specially
social sciences. Here we can ask ourselves for example: can the sudden changes of
opinion before an election or the choice of a product or racial segregation be related to
the basic physics of the Ising model? Even more, the existence of an energy principle,
something completely excluded and extraneous to the field of Social Sciences, seems
to be the main thread behind, for studying and trying to understand human and social
behavior. Certainly, delving deeper on this energy principle would require more
attention and research. Finally we conclude by asking, Can we have some hope, in a
near future and in the context of Social Science, of being able to develop predictive
tools for studying and understanding better the human behavior?
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A master equation approach is applied to a reversible and conservative cellular automaton model (Q2R). The
Q2R model is a dynamical variation of the Ising model for ferromagnetism that possesses quite a rich and
complex dynamics. The configuration space is composed of a huge number of cycles with exponentially long
periods. Following Nicolis and Nicolis [G. Nicolis and C. Nicolis, Phys. Rev. A 38,427 (1988)], a coarse-graining
approach is applied to the time series of the total magnetization, leading to a master equation that governs the
macroscopic irreversible dynamics of the Q2R automata. The methodology is replicated for various lattice sizes.
In the case of small systems, we show that the master equation leads to a tractable probability transfer matrix
of moderate size, which provides a master equation for a coarse-grained probability distribution. The method is

validated and some explicit examples are discussed.

DOI: 10.1103/PhysRevE.94.062140

I. INTRODUCTION

In statistical physics one basically considers a large set of
reversible and conservative ordinary differential equations for
the description of particle dynamics. The temporal evolution
for this cumbersome problem, even for a modest number
of particles, requires a statistical description that introduces
the concept of a probability distribution function for the
phase space of the system. Irreversibility, equilibrium, and,
more importantly, nonequilibrium properties emerge from this
probability conception of systems (with a large number of
degrees of freedom) and its deterministic evolution. Briefly, the
methodology reduces (under some assumptions) to a kinetic
description that displays an irreversible behavior to equilib-
rium observed in macroscopic systems. The assumptions for
this approach are (i) macroscopically, a system is described
by a finite set of observables, (ii) the robust instability of the
microscopic motions, which is at the basis of the sensitivity
to initial conditions and the ergodic assumption, and (iii) a
stosszahlansatz that introduces explicitly a broken before-after
symmetry for the evolution of the probability distribution.

Nicolis et al. [1,2] introduced a systematic coarse-graining
approach for the treatment of the macroscopical variables.
As a consequence, this coarse graining breaks naturally the
past-future symmetry in time, leading to an irreversible master
equation for a reduced probability distribution function of the
system. In the current paper we apply this systematic approach
to conservative and explicit reversible cellular automata.
In particular, we consider the Q2R model, introduced by
Vichniac [3], which is a cellular automaton that runs on a
two-dimensional grid of finite size and is reversible in a
physical sense, that is, not only is the automaton rule invertible,
but the backward rule reads exactly the same as the forward
one. Moreover, it was shown by Pomeau [4] that the Q2R
automaton possesses a conserved energy like quantity.

The main reason to apply the coarse-graining approach to a
cellular automaton instead of to a coupled system of ordinary
differential equations is because a cellular automaton is a
discrete model with Boolean entities as microscopic variables,
thus, the system is numerically reversible and conservative. In
consequence, Q2R seems to be a good benchmark to test the
principles of statistical physics. However, the phase space is

2470-0045/2016/94(6)/062140(9)
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finite, hence the dynamical system only possesses fixed points
and periodic orbits; therefore it cannot be ergodic, at least
in the usual sense of continuous dynamics. Nevertheless, for
large enough systems, the phase space becomes huge and the
periodic orbits may be, as we show, exponentially long, thus, in
practice, of infinite period. Further, if the initial state is random,
the temporal behavior may be quite random and it possesses
many properties of chaotic systems, such as sensitivity to initial
conditions and mixing. For any purpose, the observation of
a short periodic orbit is really improbable for large enough
systems with random initial conditions. In general, there is a
huge number of initial conditions that are almost ergodic.

By “almost ergodic” we mean that the original Q2R system
is formally not ergodic, because it only possesses finite
periodic orbits. Although finite, these periodic orbits may be
exponentially long, so an arbitrary initial condition explores
vastly the phase space, validating the equivalence of ensemble
and temporal averages. Indeed, numerical studies confirm that
the premises of statistical physics are valid, in particular,
observables may be computed using standard methods of
statistical physics. We will show that temporal averages of
a macroscopic quantity provide the same information as the
master equation for the coarse-grained distribution functions.

The study of the dynamics and properties of the Q2R
model has had a long history. Soon after the seminal works of
Vichniac [3] and Pomeau [4], Herrmann [5] implemented the
Q2R algorithm to study the two-dimensional Ising model in the
frame of the microcanonical ensemble. He studied the global
magnetization, obtaining an excellent representation for the
magnetization as a function of the initial conserved energy,
displaying a coherent picture for the phase transition of the
Ising model. Later, Herrmann e? al. [6] studied numerically the
probability to reach an infinitely long period for some energies.
Moreover, if the energy is large enough, this probability
tends to unity [6]. Next Takesue [7] focused on the possible
realization of statistical mechanics for reversible cellular
automata. His studies concerned explicitly all classes of rules
in the one-dimensional case, the Q2R being only a special
case. However, the Q2R model (90R in his terminology) is the
analog of an ideal gas of particles with speeds +1 or —1, a
system that cannot reach equilibrium in practice. However, it is

©2016 American Physical Society
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ergodic only in thermodynamical equilibrium. More recently,
in Ref. [8], Goles and Rica studied numerically the irreversible
behavior and the existence of a spontaneous transition from a
noncoherent state to a coherent state.

The present article is organized as follows. The Q2R model,
its main features, and findings are presented in Sec. II, which
is subdivided as follows: We briefly report the numerical
studies of Ref. [8] in Sec. Il A; the phase-space properties,
in particular some results on the distribution of periods of the
dynamics, are reported in Sec. II B; the sensitivity to initial
conditions is discussed in Sec. II C; and the scope of the paper
is presented in Sec. II D. Section III introduces the notion of a
master equation for the statistical description of the dynamics.
In Sec. IV we provide some precise examples, where a
coarse graining is realized, in order to get an adequate and
tractable master equation. We provide an exhaustive validation
of the technique and we discuss different coarse graining
over the phase space. Finally, we summarize in Sec. V.

II. THE Q2R MODEL

For simplicity, we consider a regular two-dimensional
lattice with N = L? nodes, in which each node is only seen by
its four closest neighbors (the von Neumann neighborhood);
we use periodic boundary conditions. Each node k possesses
a discrete value x; that may take a value +1 or —1. The Q2R
model, introduced by Vichniac [3], is based upon the following
two-step rule:

where the function ¢ is such that ¢(s = 0) = —1 and ¢(s) =
+1if s # 0. In the sum V denotes the von Neumann neighbor
of the site k. The reversibility follows directly from the inverse
relation x{ ! = x,ﬁ“qﬁ(ziew x!), which is the backward rule
[notice that ¢(3 .y, x!)? = lin all cases].

This two-step rule may be naturally rewritten as a one-step
rule by introducing a second dynamical variable [4]

1+1 t t+1

w=xp =yl Y x| (1)

ieVy

The rule (1) is complemented with the initial condition x,’fo

and y;=0.
As shown by Pomeau [4], the energy

1
Elx',y'H = =5 > ] )
(i.k)

is conserved, E[{x',y'}] = E[{x'=°,y"=}], under the dynam-
ics defined by the Q2R rule (1). Moreover, the energy is
bounded by —2N < E < 2N.

Despite the existence of an energylike quantity, it is not
possible to speak about a Hamiltonian for a discrete dynamics
because the variables x and y* and the energy (2) are discrete
quantities [4]. Moreover, supported by the existence of a large
number of periodic orbits, it is believed that Q2R possesses
a large number of other invariants. An example of additional
conserved quantities are the staggered invariants [9]. Indeed,
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for a square periodic lattice of even size L (N = L?), the full
lattice may be divided into two sublattices as follows. We
denote by k. and k, the indices of the full square. Then we
define the W sublattice by all points such thatk, + k, is aneven
number, while the B lattice is characterized by the condition
ky + k, being an odd number. (In other words, these sublattices
represent the white and black fields in the chessboard.) Then
we define

EW[{x',y’n:—% doox Y ool

ky+k, even ieVy

E“[{x’,y’}]=—% D ox o

ketkyodd i€V

The conserved energy (2) may be rewritten as E[{x’,y'}] =
EV[{x',y"}1+ E®[{x',y'}]. Further,

Iy = (D'EY Y = EP[Ix' YD (3)

is also an invariant, i.e., J[{x',y'}] = J[{x"=°,y"=0}]. This
extra invariant splits the subspace of constant E into a subset of
constant £ and constant J. The role of this staggered invariant
in the macroscopic behavior will be not be investigated in the
present work.

A. Long-time dynamics of the Q2R cellular automata

Numerical simulations of the Q2R model in two space
dimensions and for large system sizes, e.g., N = 256 x 256,
and random initial conditions show that the dynamics displays
a fluctuating spatiotemporal pattern showing regions with
states +1 and sectors with states —1, as well as zones
with chessboardlike patterns [8]. The full patterns will be
characterized by the global magnetization

M(t) = M[{x'}] = > x}. )
k

Naturally, the function M is restricted to the set {—N,—N +
2,...,N —2,N}, therefore there are N + 1 possible states of
magnetization.

A detailed characterization of the evolution, as well as the
fluctuations, for the magnetization has been treated in detail
in Ref. [8]. Briefly, after a transient the average magnetization
depends mainly on the initial energy. If the energy is low, one
sees that the average magnetization evolves slowly in time
to an equilibrium state with an almost constant value plus
weak fluctuations. For larger energies, the fluctuations play
an important role. One may observe that the system is in an
almost stable state, but then suddenly jumps into a metastable
state with zero average magnetization, and then jumps into an
opposite magnetization state [8].

The plot of the temporal average for the global magnetiza-
tion versus the energy is reported in Fig. 1. One can see that the
magnetization spontaneously increases below a critical energy
per site around E./N = —1.4, which is close to the critical
energy of the Ising model E./N = —+/2 [10,11]. Moreover,
in Refs. [5,8] the magnetization is compared as a function of
the internal energy of the system, showing a close agreement
with numerical values.
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FIG. 1. Magnetization curves as a function of initial energy for
three different system sizes N =8 x 8, N =16 x 16, and N =
256 x 256, as indicated in the legend. Each point corresponds to
a different initial condition; in this case we sample different energies.
As it can be noticed, there is a finite system dependence on the critical
behavior of the system. Indeed, the critical behavior disappears
for small system sizes N =8 x 8 and N = 16 x 16, whereas for
large systems the magnetization curve reaches a critical behavior.
The continuous line represents the well known statistical mechanics
calculation for the Ising model M/N ~ 25/19(y/2 + E/N)'/8.

We emphasize that the main feature of the Q2R automaton
is that it shows a deterministic microcanonical dynamics.
Moreover, as shown in Fig. 1, for larger size systems, the results
agree with the thermodynamical calculations in an infinite
system size [10,11]. On the other hand, other probabilistic
evolutions, such as Monte Carlo simulations or Glauber
dynamics [12], deal with a spin system in contact with a
thermal bath, that is, in canonical equilibrium. However, as
expected, both methodologies share the same macroscopic
equilibrium.

B. Phase space

The configuration space of all states is defined through
all possible values of the state {x,y}. The resulting space is
composed of the 22V vertices of a 2N-dimensional hypercube.
The smallest possible system corresponds to an N =2 x 2
lattice. In this case there are 22*% = 2% = 256 states and the
phase space is a hypercube in dimension 8. However, the
dynamics is too simple; it contains cycles of period 4 at most.
The phase space for a 4 x 4 system is the largest possible one
that can be studied exactly, case by case. In this case the system
possesses 2216 = 232 states and it contains a rich variety
of cycles [13]. This case will be studied deeply as a good
benchmark for conjectures in larger-dimensional systems.

As an example, from this case, it is observed that the total
number of cycles n(T, E) of period T and energy E would be
bounded by [14]

n(T.E) < %ZZNe—a\E\ ~ 2N In2—a|E|
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From the data one has that for 3 x 3 and 4 x 4, a =~ 0.6,
but this value varies as the lattice size increases. Here one
notices a dramatic difference among the cases depending on
| E| (greater or smaller than E, = % In2). If | E| is greater than
E. the probability to see a long period is exponentially small,
but for |E| < E, this probability reaches unity. Higher lattice
sizes confirm this scenario but modify slightly the value of
«. This behavior is consistent with the numerical simulations
of Ref. [6].

C. Sensitivity to initial conditions

The sensitivity to initial conditions of Q2R has been
discussed previously in Ref. [8]. In fact, when starting from
two distinct initial conditions, which share the same energy and
J, they will evolve along two different paths. As the distance
in phase space is bounded, these two cycles will diverge in a
nonexponential way. However, the separation growth between
them is fast enough so as to be completely analogous with the
concept of sensitivity to initial conditions.

To perform this study we require two close enough
initial configurations. A first initial configuration {x,y}"=°
is arbitrarily chosen. The second one is built by swapping
a single site &k in the previous configuration. This site is
randomly selected such that the average magnetization due
to its neighbors is zero (that is Ziev; x; =0or Z;ev; yi = 0).
In this way, both initial configurations have the same energy.
Finally, running independently both initial configurations, a
separation distance between both paths can be measured by
employing the so-called Hamming or Manhattan distance
defined as

1 o ) -
du(®) = 7 ;(Ix/i = %]+ v = 5il),

with {x,y}’ and {x,y}' denoting two different sequences
belonging to two different cycles. It can be shown numerically
that dy () grows approximately as > (see Ref. [8] for details).

D. Scope of the paper

Though the Q2R model is quite simple its dynamics is
usually very rich, as it has been documented extensively in the
literature. Moreover, this conservative and reversible system
appears to behave as a typical macroscopic system, as the
number of degrees of freedom increases, showing a typical
irreversible behavior, sensitivity to initial conditions, a kind of
mixing, etc. Itis believed that this Q2R is a good representation
of an Ising model in thermodynamical equilibrium.

The phase space of the Q2R system of N sites possesses
22N states, which are partitioned in different subspaces of
constant energy, which are partitioned into a large number of
smaller subspaces of periodic orbits or fixed points. Notice
that, because the system is conservative, there are neither
attractive nor repulsive limit sets; all orbits are fixed points
or cycles.

This feature of the phase space is schematized in Fig. 2(a),
where the constant energy subspace shares in principle many
cycles and fixed points. An arbitrary initial condition of
energy E falls into one of these cycles and runs until it
returns to the initial configuration after a time 7', which could
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FIG. 2. (a) Scheme for a subspace of constant energy composed
of a number of cycles and fixed points. (b) Cartoon of a cycle of
period 7', for which the cycle is composed of T states.

be exponentially long, and it displays a complex behavior
(not chaotic, strictly speaking; see, for instance, [15]). More
importantly, the probability that an initial condition exhibits
such a complex behavior is finite [6]. Moreover, Q2R manifests
sensitivity to initial conditions, that is, if one starts with two
distinct, but close, initial conditions, then the conditions will
evolve into very different cycles as time runs [8]. In some sense,
an initial state explores vastly the phase space, justifying the
grounds of statistical physics.

In conclusion, the overall picture is that, although for a
finite-size system the deterministic automaton Q2R possesses
periodic dynamics so it is not ergodic, there is a huge number
of initial conditions that explore vastly the configuration space
(this is particularly remarkable for initial conditions of random
structure). Therefore, one expects that a master equation
approach may be successful.

III. MASTER EQUATION
A. General formalism

Given a set of initial conditions with a fixed energy E, the
probability distribution Q,E ({x,y}) evolves following a Perron-
Frobenius-like equation

o =L/, ®)

which, in principle, can be computed by using the microscopic
evolution rule (1). Indeed, L is easy to build: If the state {x,y};
at time ¢ evolves into {x,y}; at time 7 4 1, then one sets the
(i,k) components equal to 1, that is, £ = 1. Checking all
available elements Q(E) for a given energy, we can build the
huge, Q(E) x Q(E), linear operator £F . This matrix possesses
a large number of blocks and zeros, revealing the existence
of a large number of cycles in the Q2R model (in some
sense, £F is a kind of adjacency matrix of a graph, the graph
being the total number of existing cycles for a given energy).
However, this description is impractical because of the typical
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magnitude of Q(E). Therefore, the full phase space is reduced
to a description using gross or macroscopic variables, namely,
the total magnetization (4), instead of microscopic variables.

We proceed with a coarse-graining scheme as in Ref. [1].
Let us define a noninvertible projection operator I1 that maps
the original distribution function Q[E onto p,(M),

p(M)=T-of(x. 3= >  of.

states with ), xpy=M

Formally, of may be seen as a vector of dimension Q(E) and
p: as a vector of dimension N + 1, indexed by M; hence IT
is formally a matrix with N + 1 rows and Q(E) columns.
Applying the projector operator on the Perron-Frobenius
equation (5), one gets

p(M)=T1.of =T1-L* . of | =T1- (L") - of, (6)

where Q(‘)E({x,y}) is an initial distribution.

As explained in detail in Ref. [1], in general, it is not
possible to reduce the original Perron-Frobenius equation to a
self-contained master equation. Following, Nicolis et al. [1,2],
we take an initial reduced distribution QOE ({x,y}) as a combi-
nation of step functions in the aforementioned intervals:

o6 (x.yh) =D ampuix.y)). )
M

In Eq. (7) we have defined
1 for ), =M
0 for Y, xx # M.

The linear operator ¢ may be seen as a matrix with N + 1
rows and Q2(E) columns (a state {x,y} that belongs to a
column vector of dimension Q(E) and maps onto a single
magnetization, which may take N + 1 different values). This
is the central assumption of the coarse-graining approxima-
tion. States with the same magnetization are assumed to
be uniformly distributed in the original phase space [see
the ansatz (7)]. The coefficients «); may be obtained by
inverting (7) [1]. The result is

am =Y 0§ (tx.yDeu({x,y)-

states

em{x,y}) = {

Therefore, oy, is precisely the Mth component for the coarse-
grained distribution po(M) = To£ . Thus, for this special type
of initial distribution one has

o6 (. y) =Y po(M)gw({x,y}) = ¢ - po.
M
In the last equality we have written explicitly p, as an
(N + 1)-dimensional vector and ¢! as an Q(E) x (N + 1)
matrix. Therefore, the Perron-Frobenius equation (6) becomes
p =T (LE) ¢ py. ®)

Notice that o' - IT = I is the Q(E) x Q(E) identity matrix.
Therefore, defining the (N + 1) x (N + 1) matrix WV by

W=T1-LF. ¢, )

one is able to write the final reduced Perron-Frobenius
equation, which will be of the form

P =W-p,. 10)
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The linear operator WV acts only in the subspace of constant
E, but is spanned over arbitrary values of magnetization, and
at the same time the reduced density p is a vector with its
components indexed by M.

As in the original Perron-Frobenius equation, V¥ depends
explicitly on the Q2R rule through ££; therefore, in principle,
it is possible to compute it explicitly. However, in practice,
because of the complex and unknown structure of ££ (in
particular because of the existence of a myriad of different
periods for a given E), it is not a realistic task because the
matrix WV could be quite large.

However, the matrix W can be further reduced fol-
lowing a second coarse-graining process. This partition
is defined through a finite number of sets of nonover-
lapping intervals I} = [-N, M), = [M|,M3), ..., Ix_1 =
[Mg_2,Mg_1),Ix = [Mg_1,N]. [The previous case (10) cor-
responds to K = N + 1.]

We can proceed as previously, defining a second noninvert-
ible projection operator 7 that maps the reduced distribution
function p, into a discrete and shorter column vector of
dimension K: f, =(fi,f2,....fx). Finally, we obtain a
coarse-grained master equation for the probability distribu-
tion [1,2]

fin=W-f,. (11)

Here W is named the transition probability matrix.

The following are important features of the master equa-
tion (11).

(1) The probability vector f, should be positive and
normalizable. Let 1 = (1,1, ... 1) be a K-dimensional vector;
then we set 1 - f, = 1. More importantly, because of normal-
ization Y& wy = 1, one has W' -1 = 1. This implies that
the probability is conserved under the evolution 1- f,, | =
1.Wf,=1-f,=1

(i1) The Perron-Frobenius equation could be solved exactly
provided it is given an initial given distribution f,: f, =
W fo.

(iii) Because of the Frobenius theorem, there exists an
eigenvalue that is one, A; = 1, while other eigenvalues fall
inside the unitary circle |1;| < 1 for i > 1. Let f eq be the
eigenvector associated with the eigenvalue A; = 1; this is an
invariant vector fo, = Wf eq-

(iv) In what it follows we denote by x @ the eigenvectors
of W corresponding to 2;. Naturally one has x V) = f.,.

(v) There exists an equilibrium state lim, oo f; = feq-

(vi) Because all elements in the W matrix are positive, any
non-negative initial distribution remains non-negative.

B. Explicit calculation for the transition probability matrix 4

As already mentioned, to determine empirically the matrix
W or W, we cannot use (9). Instead, we start with a
magnetization sequence {...,M,_;,M;,M,, ...} obtained
from direct numerical simulations. This sequence is always
finite, but it could be exponentially long (so in practice infinite).

The transition probability matrix W may be found from
the probability density functions at times ¢ and ¢ 4+ 1. The
elements of the matrix are given by the following conditional
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FIG. 3. Distribution p,(M) at a time ¢ schematized in the
distribution on the left. The fraction inside the interval I is distributed
after the evolution into a new distribution p,.; (M) schematized in the
diagram on the right. The normalized distribution provides the kth
element of the ith column: w;;.

probabilities (here we use different notation than in Ref. [1]):

PM e iNM, €ly)
P(M,; € Iy)

Here M, belongs to the interval /i at time ¢ and MLH belongs

to the interval /; at ¢ + 1. Finally, the matrix W does not

depend on time, which is a feature of a Markov process. The
coarse-graining method is schematized in Fig. 3.

Wik = P(M;y1 € I;|M; € I}) =

C. Chapman-Kolmogorov condition and time-reversal
symmetry

The final expression for the probability transition matrix (9)
found after applying the formalism of Refs. [1,2] follows
directly from Eq. (8) and the ansatz (7), which implies
@' . T1 = I. These relations are equivalent to the so-called
compatibility condition

- (LE) -l = W',

This compatibility condition (or Chapman-Kolmogorov condi-
tion) arises as a result of the approximations done in Sec. Il A,
however it is not a general property of the dynamics. For
instance, by taking a complete cycle (+ = T'), one readily gets

m- (£ -¢f =1

(with I being the identity matrix), which evidently differs from
WT because VW represents an irreversible behavior toward
equilibrium. Therefore, the compatibility condition is only
valid as an approximation for a limited number of time steps
that enter to a particular sequence. The same argument holds
for the reduced matrix W defined through (11).

Let us call W the resulting probability transfer matrix
after T steps; that is, by computing W as a consequence of
the evolution from ¢ up to ¢ 4 7, the Chapman-Kolmogorov or
compatibility condition for W reads

W® — W . W(rz), (12)

where T = 11 + 1. In particular, for 7, = 1, = 1 one should
satisfy

W =w.W=w.
Other compatibility conditions are
WO = WO W, WO = W. W,

WO = WO WO W . W
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etc. In Sec. IV C we check in practice how well these Chapman-
Kolmogorov conditions are satisfied.

Finally, let us state an important result due to Pomeau [16].
The K-time correlation functions impose some restrictions
on the W matrix. Because of time-reversal symmetry, for all
indices iy,i2, ...,ix = {1,2,...,K} the symmetry relation

Wiyiy Winis * * * Wig_yig Wigiy = Wiyig Wigig_y * * Wisi, Wisi (13)
must be satisfied. In what it follows, we apply this coarse-
graining approach to compute the probability transfer matrix
for some particular cases.

IV. SPECIFIC COMPUTATION OF THE TRANSITION
PROBABILITY MATRIX IN VARIOUS SITUATIONS

In this section we apply the coarse-graining approach to the
Q2R dynamics in the case of a small lattice size. In Ref. [17]
we have explored the computation of the transition probability
matrix, in particular, in the case of extended systems (N =
256 x 256). However, in this case the cycles are usually huge,
therefore this general approach is not really satisfactory. In
this sense, we focus our effort on treating systems of moderate
sizes, namely, N =4 x4, N =8 x §,and N = 16 x 16, all
of them having tractable cycles.

A. Robustness of the methodology

In general, for a system of small size, one is able to find
some cycles for a given energy. Building a time series for
the magnetization {M (1)} = {M;,M>, ... ,Mr}, one defines
a partition of the possible values of the magnetization, as
explained in Sec. III. In the cases considered here, it is always
possible to use the finest possible partition, that is, for the exact
available values of the magnetization (something impractical
in large systems). In this case the partitions are composed
of a set of N + 1 (N is assumed to be even) well defined
values M = {—N,—N +2,—N +4,...,N —2,N}. That is,
for 4 x 4 the partition has a maximum of 17 elements, for
N = 8 x 8 there are 65 elements, and for N = 16 x 16 the
partition possesses a maximum of 257 elements.

The first result concerns the equivalence of the probability
density function of magnetization obtained via the time series
of the magnetization and the equilibrium distribution resulting
from the eigenvectors of the transition probability matrix
W. Hence, the results arising from temporal averages and
the transition probability matrix in the configuration space
are consistent among themselves. This fact ensures an initial
validation of the method. However, the transition probability
matrix provides extra information about a system, including
the nonequilibrium properties, given by the spectrum of W.

Next we describe the methodology for the case of a lattice
of size 16 x 16 for an orbit with £ = —292 and period T =
43115 258. The transition probability matrix W is constructed
following the steps of Sec. III B. However, first we verify that
the master equation does not strongly depend on the length of
the time series for the magnetization. It is important to remark
that we think that this is a crucial step, because it allows us to
compare explicitly the dependence of the results on the partial
length of the cycles, something that is not possible for larger
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FIG. 4. (a) Plot of the equilibrium distribution f, for the case of
a 16 x 16 system size with E = —292 (E/N =~ —1.14) and a cycle
of period 7' = 43 115 258 (the complete cycle). The computation of
feq 1s compared with shorter sequences of the same time series of
length 7% = 10°,5 x 10°,20 x 10°. (b) Set of 257 eigenvalues of the
W matrix for the same conditions as in (b).

systems, because in these cases we would never be able to
build the complete period for the time series.

To test the above, we use again the finest partition. In this
case, the transition matrix is of dimension 257 x 257 (so we
will not provide it explicitly) and we characterize it by its
equilibrium distribution and the full set of eigenvalues of W.
Figure 4(a) plots the equilibrium distributions f . for the total

cycle T and f7" for the partial cycle of length T*. Similarly,
Fig. 4(b) plots the set of 257 eigenvalues, denoted by AiT*,
for the same sequence {M(¢)}, but for four different lengths
of the time series. Visually, no substantial difference among
the different values of T* can be observed. Moreover, Table 1
compares quantitatively the mean square difference measur-
ing 01 = [IfT" — feglP/K and 0> = YK [ — 2] 1P/K.
Here K is the number of partitions.

TABLEI. Error estimation of the equilibrium distribution and the
spectral decomposition of the W matrix for different lengths of the
time series.

Tx 0, [

100 3.95 x 107> 0.0038
5 x 10° 3.91 x 10~ 0.0020
20 x 10° 3.84 x 107> 0.0002
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Notice that an important feature of the transition probability
matrix is that its eigenvalues are real if the time series satisfies
reversibility [16]. We have verified that the coarse-graining
approach applied to the full cycle with period 7" shows this
important feature. Namely, the eigenvalues of the W matrix
are real numbers. However, as we apply the same approach
to a partial sequence of the same cycle of length less than
T, some eigenvalues become complex (typically located near
the origin in the complex plane). This is important because,
in practice, for larger-size systems, one never closes a cycle,
hence only incomplete sequences are available and thus the
matrix would not have, in general, pure real eigenvalues.
However, we emphasize that the existence of these complex
eigenvalues is spurious.

Finally, it is important to compare results for partitions of
different size. First, we compute the equilibrium distribution
for three different partitions sets, more precisely, for an 8 x 8
system evolving by Q2R at E =0 in a periodic orbit of
T = 672018. Figure 5(a) compares the three different coarse-
graining partitions (containing 5, 11, and 34 elements). Despite
the evident differences among the coarse- and the finer-
graining partitions, one notices that both partitions exhibit
the same accurate behavior of the equilibrium distribution.

feq

0.12 e 5x5 | " " - i
¢ 11x11 [feq
011" 34x34 R 102 /\
. . 0t
£ ]
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50 0 ]\j:n
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FIG. 5. (a) Plot of the equilibrium distribution foq vs M for an
8 x 8 system size with E = 0 and a cycle of a period T = 672018
for three different partitions of the magnetization values. The plot
shows how all distribution functions lie under the same curve. The
inset shows the parabolic behavior in magnetization, which after
a fit reads In foq = —M?/116. (b) Plot of the second eigenmode
x@ corresponding to the eigenvalue closest to the unit circle. It is
noticeable how all partitions produce similar results.
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Moreover, Fig. 5(b) compares the second eigenmode x®
without any substantial difference among the partitions.

In what follows, we summarize the methodology for cases
of sizes 4 x 4,8 x 8, and 16 x 16. In all cases, the full cycles
are considered and we provide the finest possible partition.

B. Exact calculation for various lattices

We have studied in detail the case of a 4 x 4 periodic
lattice because the phase space possesses 232 & 4 x 10°
distinct configurations and the calculations can be completely
performed, thus showing explicitly the method. Itis shown that
the coarse-graining approach is fully applicable in the 4 x 4
lattice case. We used different partitions, getting a well defined
probability transfer matrix W. Reference [13] summarizes the
calculations and main characteristics for various energies.

Next we explore a few cycles for larger systems (8 x 8 and
16 x 16). The cycles in these cases may be as long as desired
for any practical purpose so that the equilibrium distribution
is calculated with enough precision.

In the case of 8 x 8, for various energies and the finest
possible coarse graining, for the sake of brevity, we omit
explicitly the plots of the first eigenvector f, as well as the
eigenvalues because they are similar to the 16 x 16 lattice case.

Thecaseofa 16 x 16 system size displays the most accurate
equilibrium distribution found in the current research. The fluc-
tuations around the distribution are small and the eigenvalues
seem to form a continuous spectrum (the difference between
two consecutive eigenvalues is small). We have also explored
a wide range of energies. The rank of the matrices (that is, for
the finest partition) is K = 122 for E = —332, K = 205 for
E = -316,K = 197for E = —292,K = 129for E = —168,
and K = 101 for E = —92. The equilibrium distribution, as a
function of the magnetization, is plotted in Fig. 6(a). Similarly,
the spectral decomposition is shown in Fig. 6(b).

In Fig. 6(a) one notices how in the case of larger energies,
say, E = —92 and —168, the equilibrium distribution function
is symmetric, under the change M — —M; however, as
the energy decreases one sees that for the lowest energy
E = —332 a spontaneous symmetry breaking appears, so
the equilibrium distribution is no longer an even function.
The equilibrium probability may manifest a positive or
negative magnetization (switching from one case to the other
by changing the initial condition via the transformation
{x,y)=0 = {—x,—y}"=%). Moreover, the energy E = —316
case shows an equilibrium probability density function that
manifests bi-stability. Indeed, these bimodal distributions
possess three peaks, one at M =0 and the two other at
M = +M, # 0. Finally, the width of the probability density
functions increases near the transition energy.

Figure 6(b) shows the spectral distribution of the probability
transfer matrix that defines the master equation. Already
for a lattice of size 16 x 16 one observes how the spectral
distribution is almost continuous. One notices that the energies
E = —316 and —292 possess the largest eigenvalues for
a given index i. This means that, probably, the largest
eigenvalues occur near the critical energy.

It is interesting to remark that the nonequilibrium is gov-
erned by those eigenvalues close to one. The nonequilibrium
features behave as slow modes. In the current case one has
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FIG. 6. (a) Equilibrium distributions f', for the case of a 16 x 16
system size and for the energies and periods E = —332 and T =
796398, E = —316 and T =4015624, and E = —-292 and T =
43 115258, respectively. We also consider E = —168 and —92 with
periods larger than T > 10%. (b) Eigenvalues of the W matrix showing
the existence of long-wave relaxation properties.

f.= Z,l(:l a; Al x V. Defining 0; = —InA;, one obtains the
usual slow mode relaxation. Moreover, the global behavior
of the eigenvalues closest to unity represents the transport
coefficients [17]. Figure 6(b) indicates that A; ~ 1 — yi,
which suggests that the nonequilibrium features are governed
by a Fokker-Planck kind of equation. The behavior of the
eigenvector agrees also qualitatively with this picture (see [17]
for more details).

C. Chapman-Kolmogorov conditions

We have checked the Chapman-Kolmogorov relations for
the case of Q2R in a 16 x 16 lattice for the case of £ = —292
and a periodic orbit of 7' =43 115258. We have built five
different probability transfer matrices W=D, ... W= (see
Sec. III C for the definition of W).

First, we compared the matrices W@=2 and W=D
W=D both of rank 197 x 197, computing the distance
between them, e.g., WT=2 and W=D . W=D yia the usual
distance (the square indicates the product of a matrix by itself)

1 - . .
d= FTr[(W(’:Z) — W=D W=Dy
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FIG. 7. Plot of the ratio g, for five eigenmodes for the case of a
16 x 16 system.

In the current case, the matrices are similar up to d =
5.81 x 1075, More quantitatively, we look at how good the
eigenvectors of different matrices are, namely, W(=2 and
W=D . W=D To do that, we compute the ratio among the
nth eigenvectors of the aforementioned matrices, that is,

2
P

qn - 715
X"

where x(® and x(V are the nth eigenvector of the matrices
W= and W=D, This quantity is plotted in Fig. 7. One
notices that g, &~ 1 almost for all values of magnetization, but
it also has an anomalous behavior near the nodal points of
the eigenvector xV. In general, the agreement of all these
eigenvectors is satisfactory.

Next we check the Chapman-Kolmogorov relations written
in Sec. IIIC, comparing the spectral properties of both
matrices, namely, the set of eigenvectors and its eigenvalues.
As can be seen in Fig. 8(a), the equilibrium distribution f,
matches perfectly for different values of T = {1,2,3,4,5}. This
proves that the equilibrium configuration f, is an invariant
of the dynamical system. However, nonequilibrium properties
do depend on the sampling time t. Indeed, the eigenvalues
corresponding to different probability transfer matrices do
depend on the choice of the parameter t. This is not a surprise,
because it is expected that the eigenvalues )\f.r) of W™ should
scale as )Ll(»f) = A}, where A; are the set of eigenvalues of
W@=D_ This scaling is shown in Fig. 8(b), indicating an
anomaly because it does not work for the case T = 1, but the
scaling works well for higher z. This deserves more careful
study.

D. Pomeau’s reversal symmetry relation

According to Pomeau [16], the microscopic time-reversal
symmetry imposes the symmetry relation (13). For rank-K
transition probability matrices, it is possible to verify that
there are KX different required conditions (13). Therefore,
it is only possible to check this condition for a moderate rank
K. For the case of 4 x 4 all probability transfer matrices
that we have checked satisfy Pomeau’s reversal symmetry
relation [13]. For larger W matrices, say, K > 9, we have not
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FIG. 8. (a) Equilibrium distributions f,, for the case of a
16 x 16 system and for the energy E = —292 and 7 = 43 115258.
(b) Eigenvalues of the W matrix showing the existence of long-wave
relaxation properties.

checked Pomeau’s relation because it involves a cumbersome
numerical calculation.

V. CONCLUSION

The basic properties of a Q2R cellular automaton, namely,
its formal reversibility and the existence of a conserved energy,
suggest that Q2R could be a good benchmark to test ideas of
statistical mechanics. More importantly, the reversibility is not

PHYSICAL REVIEW E 94, 062140 (2016)

APPENDIX C. ARTICLE

conditioned by any kind of approximate numerical algorithm.
The Q2R model possesses a rich dynamics characterized by
a huge number of invariants that partition the phase space in
terms of the conserved energy and a huge number of periodic
cycles. Although in a system of moderate size the periods are
huge [6], for lattices of small size these cycles may be fully
characterized.

We introduced a coarse-graining approach that allowed us
to write a coarse-grained master equation, which characterizes
equilibrium and nonequilibrium statistical properties of the
system. We reviewed the methodology and tested the con-
sistency of results in lattices of different sizes. We found
that for well chosen partitions, this coarse-graining technique
is a powerful tool to reduce the information of the whole
system in such a way as to obtain a tractable probability
transfer matrix that simplifies the original master equation.
One central property of this matrix is the existence of an
invariant probability distribution that agrees with different
coarse-graining procedures. In addition, we computed the
spectral decomposition of the probability transfer matrix
characterizing the nonequilibrium properties of the system.
Finally, we checked the compatibility conditions, as well as
the time-reversal symmetry conditions for short time steps. In
many situations the methodology is consistent and provides a
complete statistical description of the system. However, some
discrepancies appear that deserve caution.

This study provided us with a systematic approach for
reducing the number of pertinent macroscopical variables
resulting into a manageable master equation.
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